scholarly journals The Influence of Dietary Lipid Composition on Skeletal Muscle Mitochondria From Mice Following Eight Months of Calorie Restriction

2014 ◽  
pp. 57-71 ◽  
Author(s):  
Y. CHEN ◽  
K. HAGOPIAN ◽  
D. BIBUS ◽  
J. M. VILLALBA ◽  
G. LÓPEZ-LLUCH ◽  
...  

Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H2O2 production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.

2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Yana Chen ◽  
Kevork Hagopian ◽  
Douglas Bibus ◽  
José M. Villalba ◽  
Guillermo López-Lluch ◽  
...  

To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H2O2 production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.


2012 ◽  
Vol 67 (11) ◽  
pp. 1121-1131 ◽  
Author(s):  
Yana Chen ◽  
Kevork Hagopian ◽  
Roger B. McDonald ◽  
Douglas Bibus ◽  
Guillermo López-Lluch ◽  
...  

2007 ◽  
Vol 32 (5) ◽  
pp. 884-894 ◽  
Author(s):  
Sheila R. Costford ◽  
Erin L. Seifert ◽  
Véronic Bézaire ◽  
Martin F. Gerrits ◽  
Lisa Bevilacqua ◽  
...  

Despite almost a decade of research since the identification of uncoupling protein-3 (UCP3), the molecular mechanisms and physiological functions of this mitochondrial anion carrier protein are not well understood. Because of its highly selective expression in skeletal muscle and the existence of mitochondrial proton leak in this tissue, early reports proposed that UCP3 caused a basal proton leak and increased thermogenesis. However, gene expression data and results from knockout and overexpression studies indicated that UCP3 does not cause basal proton leak or physiological thermogenesis. UCP3 expression is associated with increases in circulating fatty acids and in fatty acid oxidation (FAO) in muscle. Fatty acids are also well recognized as activators of the prototypic UCP1 in brown adipose tissue. This has led to hypotheses implicating UCP3 in mitochondrial fatty acid translocation. The corresponding hypothesized physiological roles include facilitated FAO and protection from the lipotoxic effects of fatty acids. Recent in vitro studies of physiological increases in UCP3 in muscle cells demonstrate increased FAO, and decreased reactive oxygen species (ROS) production. Detailed mechanistic studies indicate that ROS or lipid by-products of ROS can activate a UCP3-mediated proton leak, which in turn acts in a negative feedback loop to mitigate ROS production. Altogether, UCP3 appears to play roles in muscle FAO and mitigated ROS production. Future studies will need to elucidate the molecular mechanisms underlying increased FAO, as well as the physiological relevance of ROS-activated proton leak.


2006 ◽  
Vol 38 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Rachel Navet ◽  
Ange Mouithys-Mickalad ◽  
Pierre Douette ◽  
Claudine M. Sluse-Goffart ◽  
Wieslawa Jarmuszkiewicz ◽  
...  

Mitochondrion ◽  
2007 ◽  
Vol 7 (6) ◽  
pp. 422-423
Author(s):  
George Kypriotakis ◽  
Bruce H. Cohen ◽  
Sumit Parikh ◽  
Douglas S. Kerr ◽  
Charles L. Hoppel ◽  
...  

2007 ◽  
Vol 467 (2) ◽  
pp. 234-238 ◽  
Author(s):  
Kristen L. King ◽  
William C. Stanley ◽  
Mariana Rosca ◽  
Janos Kerner ◽  
Charles L. Hoppel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document