scholarly journals Interaction of Perivascular Adipose Tissue and Sympathetic Nerves in Arteries From Normotensive and Hypertensive Rats

2016 ◽  
pp. S391-S399 ◽  
Author(s):  
J. TÖRÖK ◽  
A. ZEMANČÍKOVÁ ◽  
Z. KOCIANOVÁ

The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from arterial sympathetic nerves during transmural electrical stimulation or after application of tyramine. In contrast, the abdominal aorta with intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the responses to noradrenaline were similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats (SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impaired anticontractile influence of PVAT might significantly contribute to its increased sensitivity to adrenergic stimuli.

2017 ◽  
pp. S537-S544
Author(s):  
A. ZEMANČÍKOVÁ ◽  
J. TÖRÖK

The aim of this study was to investigate the effect of high fructose intake associated with moderate increase in adiposity on rat arterial adrenergic responses and their modulation by perivascular adipose tissue (PVAT). After eight-week-lasting substitution of drinking water with 10 % fructose solution in adult normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), their systolic blood pressure, plasma triglycerides, and relative liver weight were elevated when compared to their respective control groups. Moreover, in SHR, body weight and relative heart weight were increased after treatment with fructose. In superior mesenteric arteries, PVAT exerted inhibitory influence on adrenergic contractile responses and this effect was markedly stronger in control WKY than in SHR. In fructose-administered WKY, arterial adrenergic contractions were substantially reduced in comparison with the control group; this was caused mainly by enhancement of anticontractile action of PVAT. The diminution of the mesenteric arterial contractions was not observed after fructose treatment in SHR. We conclude that the increase in body adiposity due to fructose overfeeding in rats might have pro-hypertensive effect. However, in WKY it might cause PVAT-dependent and independent reduction in arterial contractile responses to adrenergic stimuli, which could attenuate the pathological elevation in vascular tone.


2009 ◽  
Vol 87 (11) ◽  
pp. 944-953 ◽  
Author(s):  
Robert M.K.W. Lee ◽  
Lili Ding ◽  
Chao Lu ◽  
Li-Ying Su ◽  
Yu-Jing Gao

We studied the role of perivascular adipose tissue (PVAT) in the control of vascular function in an in vivo experimental model of hypertension produced by angiotensin II infusion by osmotic minipump in adult male Wistar rats. Two weeks after infusion with angiotensin II, blood pressure in treated rats was significantly elevated but heart rate was reduced compared with control rats infused with physiological saline. Contraction of aorta from the 2 groups of rats in response to phenylephrine or serotonin was significantly attenuated by the presence of PVAT in both the presence and absence of endothelium. This attenuation effect on contraction to phenylephrine was higher, however, in vessels from control rats than in vessels from hypertensive rats in the absence of endothelium. In the mesenteric resistance arteries, lumen diameter was larger in both hypertensive and control vessels with intact PVAT than in vessels with PVAT removed. The medial wall was thicker in arteries from hypertensive rats. The presence of PVAT potentiated the contraction induced by KCl in mesenteric arteries from control rats, but not in hypertensive rats. PVAT also attenuated the contraction of mesenteric arteries in response to phenylephrine or serotonin in both hypertensive and control groups. Mesenteric arteries from hypertensive rats were more responsive to stimulation by serotonin than those from control rats. We conclude that the increased blood pressure of Wistar rats that occurred after infusion with angiotensin II was associated with changes in the functions of PVAT in the aorta and mesenteric arteries and in the structure and function of resistance arteries.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Anna Zemančíková ◽  
Jozef Török

Perivascular adipose tissue (PVAT) and its vasomodulatory effects play an important role in the physiology and pathophysiology of blood vessels. Alterations in PVAT associated with reduction in its anticontractile influence are proven to contribute to vascular dysfunction in hypertension. The aim of this study was to examine whether the changes in PVAT properties could participate in progression of vascular abnormalities in developing spontaneously hypertensive rats (SHR). Normotensive Wistar-Kyoto (WKY) rats and SHR, both in 5th and in 12th week of age, were used. Systolic blood pressure was similar between WKY rats and SHR in 5th week of age; however, in 12th week, it was significantly increased in SHR comparing to WKY rats. The amount of retroperitoneal fat was higher in WKY rats in both age groups, whereas body weight was higher in WKY rats only in 12th week, when compared to age-matched SHR. From isolated superior mesenteric arteries, two ring preparations were prepared for isometric tension recording, one with PVAT intact and other with PVAT removed. In WKY rats as well as in SHR, arterial contractile responses to noradrenaline, applied cumulatively on rings, were significantly inhibited in the presence of intact PVAT. In both age groups, anticontractile effect of PVAT was higher in WKY rats than in SHR. Neurogenic contractions, induced by electrical stimulation of perivascular sympathoadrenergic nerves, were significantly attenuated in the presence of PVAT in WKY mesenteric arteries from both age groups; however, in arteries from SHR, intact PVAT had no influence on this type of contractile responses. The results suggest that in SHR impairment of anticontractile effect of PVAT precedes hypertension and might contribute to its development.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1552
Author(s):  
Jozef Torok ◽  
Anna Zemancikova ◽  
Zuzana Valaskova ◽  
Peter Balis

The aim of the current study was to evaluate the influence of a high-fat diet and its combination with high-fructose intake on young normotensive rats, with focus on the modulatory effect of perivascular adipose tissue (PVAT) on the reactivity of isolated arteries. Six-week-old Wistar–Kyoto rats were treated for 8 weeks with a control diet (10% fat), a high-fat diet (HFD; 45% fat), or a combination of the HFD with a 10% solution of fructose. Contractile and relaxant responses of isolated rat arteries, with preserved and removed PVAT for selected vasoactive stimuli, were recorded isometrically by a force displacement transducer. The results demonstrated that, in young rats, eight weeks of the HFD might lead to body fat accumulation and early excitation of the cardiovascular sympathetic nervous system, as shown by increased heart rate and enhanced arterial contractile responses induced by endogenous noradrenaline released from perivascular sympathetic nerves. The addition of high-fructose intake deteriorated this state by impairment of arterial relaxation and resulted in mild elevation of systolic blood pressure; however, the increase in arterial neurogenic contractions was not detected. The diet-induced alterations in isolated arteries were observed only in the presence of PVAT, indicating that this structure is important in initiation of early vascular changes during the development of metabolic syndrome.


1986 ◽  
Vol 251 (5) ◽  
pp. H1000-H1008 ◽  
Author(s):  
J. L. Hart ◽  
W. Freas ◽  
S. M. Muldoon

Activity of the vascular neuroeffector junction was examined in pregnant (PG) and nonpregnant (NPG) rats to determine whether changes could account for the reported alterations in sympathetic control of the maternal circulation. Caudal and mesenteric arteries were removed from NPG and 19-21 day PG rats and prepared for isometric tension recording. Frequency-response measurements were obtained, followed by norepinephrine (NE) and tyramine concentration-response measurements. The caudal artery developed more tension in response to NE, tyramine, and electrical stimulation than did the mesenteric artery; however, there were no differences between vessels from NPG and PG rats. NE content, [3H]NE accumulation, and effects of plasma on [3H]NE accumulation of NPG and PG caudal arteries were also compared and found to be similar. Therefore, vascular neuroeffector functions of NE release, receptor sensitivity, and NE accumulation are not modified in the rat during pregnancy. Changes in sympathetic control of the maternal circulation are likely to be dependent on alterations at sites other than the neuroeffector junction.


2018 ◽  
Vol 38 (4) ◽  
pp. 880-891 ◽  
Author(s):  
Sophie N. Saxton ◽  
Katie E. Ryding ◽  
Robert G. Aldous ◽  
Sarah B. Withers ◽  
Jacqueline Ohanian ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 106 ◽  
Author(s):  
Satomi Kagota ◽  
Kana Maruyama-Fumoto ◽  
Saki Iwata ◽  
Miho Shimari ◽  
Shiori Koyanagi ◽  
...  

Perivascular adipose tissue (PVAT) can regulate vascular tone. In mesenteric arteries of SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF) with metabolic syndrome, vascular dysfunction is compensated by PVAT-dependent mechanisms that disappear with increasing age. In this study, we investigated the mechanisms of the age-related changes and responsible factor(s) involved in the enhancing effects of mesenteric arterial PVAT in SHRSP.ZF. Acetylcholine- and sodium nitroprusside-induced relaxations of isolated arteries were greater with PVAT than without PVAT at 17 and 20 weeks of age (wks), and as expected, this enhancement by the presence of PVAT disappeared at 23 wks. PVAT mRNA levels of angiotensin II type 1 (AT1) receptor-associated protein was less and AT1 receptor was unchanged at 23 wks when compared to 20 wks. At 20 wks, the enhanced acetylcholine-induced relaxation by the presence of PVAT was inhibited by N-acetyl-l-cysteine (NAC). Acetylcholine-induced relaxation of arteries without PVAT was increased in the presence of exogenously added apelin. PVAT mRNA level of apelin was higher in SHRSP.ZF than in control Wistar-Kyoto rats, and the level was decreased with aging. These results suggest that AT1 receptor activation in PVAT, and changes in the regulation of apelin and a NAC-sensitive factor are related to the age-dependent deterioration of the vasodilation enhancing effects of mesenteric arterial PVAT in SHRSP.ZF.


1997 ◽  
Vol 272 (3) ◽  
pp. H1087-H1093 ◽  
Author(s):  
P. Medina ◽  
I. Noguera ◽  
M. Aldasoro ◽  
J. M. Vila ◽  
B. Flor ◽  
...  

Vasopressin not only acts directly on blood vessels through V1-receptor stimulation but also may modulate adrenergic-mediated responses in animal experiments in vitro and in vivo. The aim of the present study was to investigate whether subpressor concentrations of vasopressin could modify the constrictor responses to norepinephrine and electrical stimulation of the perivascular nerves in human mesenteric arteries. Human mesenteric artery rings (3-3.5 mm long, 0.8-1.2 mm OD) were obtained from 38 patients undergoing abdominal operations. The arterial rings were suspended in organ bath chambers for isometric recording of tension. Vasopressin (3 x 10(-11) M) enhanced the contractions elicited by electrical stimulation at 2, 4, and 8 Hz (by 100, 100, and 72%, respectively) and produced a leftward shift of the concentration-response curves to norepinephrine (half-maximal effective concentration decreased from 2.2 x 10(-6) to 5.0 x 10(-7) M; P < 0.05) without any alteration in maximal contractions. Vasopressin also potentiated KCl- and calcium-induced contractions. The V1-receptor antagonist 1-[beta-mercapto-beta,beta-cyclopentamethylenepropionic acid-2-O-methyl-tyrosine, 8-arginine]vasopressin (10(-6) M) prevented the potentiation evoked by vasopressin in all cases. The calcium antagonist nifedipine (10(-6) M) did not affect the potentiation of electrical stimulation and norepinephrine induced by vasopressin but abolished KCl-induced contractions. The results suggest that vasopressin, in addition to its direct vasoconstrictor effect, strongly potentiates the responses to adrenergic stimulation and KCl depolarization. Both the direct and indirect effects of vasopressin appear to be mediated by V1-receptor stimulation. The amplifying effect of vasopressin on constrictor responses may be relevant in those clinical situations characterized by increased plasma vasopressin levels.


Sign in / Sign up

Export Citation Format

Share Document