scholarly journals Managing white clover for productive and profitable sheep farming in Southland

Author(s):  
J.P.J. Eerens ◽  
D.L. Ryan

White clover is often listed as one of the factors contributing to profitable pastoral farming in New Zealand. The positive aspects of white clover have been presented in a balanced manner in publications by scientists, environmentalists and farmers able to exploit these positive aspects. Increasingly, pastures contain sub-optimal levels of clover, as a result of pasture management that is detrimental to clover, including the increasing use of fertiliser nitrogen. In some regions of New Zealand, farmers can legitimately point to pests such as the clover root weevil and factors such as the ryegrass endophyte as causing restrictions in clover production, but this is less the case in Southland. Environmental conditions in Southland are well suited for ryegrass-white clover pastures. Wellmanaged ryegrass-white clover pastures containing the best regional cultivars can achieve high financial returns. A number of trials at the Gore Research Station are reviewed; they demonstrated that on mixed ryegrass-white clover swards farmers can produce nearly 25% more dry matter, 40% more carcass weight and 25% more wool than on pastures with ryegrass alone receiving 270 kg N/ha/year. The yield advantage would have been greater still if they were compared with typical Southland pastures. Not only was 180 kg more carcass and 17 kg more wool produced per hectare on mixed swards, but nitrogen fixation by clover produced more than $300 worth of nitrogen per hectare. The yield advantage achievable from the ryegrass-white clover swards requires specific pasture management, particularly in spring- summer and the use of adapted white clover cultivars. Keywords: cultivars, Lolium perenne, nitrogen, pasture production, perennial ryegrass, set stocking, Trifolium repens, white clover, wool

1997 ◽  
Vol 37 (2) ◽  
pp. 165 ◽  
Author(s):  
J. S. Dunbabin ◽  
I. H. Hume ◽  
M. E. Ireson

Summary. Perennial ryegrass–white clover swards were irrigated for 3 years every 50, 80 and 120 mm of crop evapotranspiration minus rainfall (ETc–R) and water ponded on the soil surface for either 4, 12 or 24 h at each irrigation. Pasture production and clover content were highly seasonal, peaking in spring and autumn. Frequent irrigation increased dry matter production by an average of 56%. When irrigating at 50 mm ETc–R, dry matter production was decreased by ponding water on plots, 17% for 12 h ponding and 14% if ponded for 24 h. However, when irrigating at an interval of 80 mm ETc–R ponding increased dry matter production by 7% for 12 h ponding and by 25% for 24 h ponding. Ponding also increased production at an irrigation interval of 120 mm ETc–R by 25% for 12 h ponding but only by 2.4% for 24 h ponding. While these increases in dry matter production are large in relative terms the absolute increase in production is small. More water infiltrated per irrigation at longer irrigation intervals, and at longer ponding times. Frequently irrigated, rapidly drained swards used irrigation water most efficiently. The small gain in dry matter production achieved by prolonging ponding at longer irrigation intervals is an inefficient use of water and likely to recharge regional groundwater systems. Oxygen diffusion rate measurements suggested that ponding for as short as 4 h was likely to cause waterlogging stresses and that these stresses were higher when irrigating frequently. The relative increase in waterlogging stress by extending the period of ponding from 4 to 24 h was small.


Author(s):  
C.T. Westwood ◽  
M.G. Norriss

Liveweight changes were measured for lambs grazing six high endophyte perennial ryegrasses, in a grazing experiment run by an independent research organisation in Canterbury, New Zealand. Ryegrass cultivars were sown under code in a binary mix with white clover in February 1997. Plots were strategically irrigated to avoid moisture stress, and stocked at approximately 27 Coopworth ewe lambs per ha in May 1997. Common pasture residual mass was maintained across cultivars by strategic addition of extra lambs, with extra grazing days recorded for each replicate. Lamb liveweight gains and botanical composition of replicates were assessed quarterly. Lamb liveweight gains differed significantly between treatments in Years 1 and 2 of this ongoing 3 year study. Lambs grazing 'Quartet' tetraploid perennial ryegrass gained, on average, 37.4 kg and 36.1 kg liveweight during Years 1 and 2 respectively, and together with 'Aries HD' (35.0 and 35.9 kg) produced significantly greater liveweight gain compared with 'Grasslands Nui' (22.0 and 23.7 kg) and 'Bronsyn' (22.5 and 24.1 kg), LSD0.05 = 6.0 and 7.4. Lambs grazing 'Embassy' gained 31.6 kg and 28.7 kg, and 'Vedette' 29.8 kg and 28.0 kg. Extra grazing days expressed as a percentage of base grazing days were between 3.8 and 6.7% across cultivars for Year 1 and between 2.0 and 6.5% across cultivars for Year 2. This study demonstrated significant differences in animal productivity between perennial ryegrass cultivars that produce comparable yields of dry matter. Differences may reflect variation in forage quality, endophyte toxins, clover content in the sward or other unidentified cultivar characteristics. Keywords: digestibility, endophyte, lamb, liveweight, perennial ryegrass, tetraploid


Author(s):  
J.M. Hayman

The perennial ryegrass cultivars 'Grasslands Ruanui', 'Grasslands Ariki' and 'Grasslands Nui' were sown with clover and compared at three levels of irrigation under rotational grazing with sheep. Ryegrass cultivar had little effect on total annual pasture production, although Nui pastures produced more total DM in autumn and winter. Nui was the most persistent cultivar and produced substantially more ryegrass than the orhers (6.1 t/ha, compared with 4.1 t/ha for Ruanui and 3.3 t/ha for Ariki) . Nui pastures produced less white clover, volunteer grasses and weeds. When grazed at the same stocking rate, sheep liveweight gain was similar regardless of ryegrass cultivar.


2021 ◽  
Vol 17 ◽  
Author(s):  
Breanna Taylor ◽  
Anna Mills ◽  
Malcolm Smith ◽  
Richard Lucas ◽  
Derrick Moot

Dry matter yield and botanical composition of four grazed dryland pasture types were compared over 8 years in summer-dry conditions at Ashley Dene, Canterbury, New Zealand. The experiment was sown in March 2013 to evaluate cocksfoot (CF)- or meadow fescue/ryegrass hybrid (RG)-based pastures established with either subterranean (Sub) or subterranean and balansa (S+B) clovers. Plantain was included in all pasture types. Perennial ryegrass established poorly on the low soil moisture holding capacity Lismore soil and in Year 2 was re-broadcast into the RG pastures. Despite this, plantain was the main sown species in RG pastures beyond Year 3. Total spring yield was greatest in Year 5 at 6720 kg DM/ha and varied with spring rainfall. Cocksfoot-based pastures had 60% of sown species present in the spring of Year 8, compared with 28% in RG-based pastures. Balansa clover was only present up to Year 5 after a managed seeding event in the first spring. White clover did not persist in the dryland environment past Year 2. Sub clover yield depended on the time and amount of autumn rainfall but contributed up to 45% of the spring yield. Cocksfoot-sub clover pastures appear to be most resilient in this summer-dry environment with variable spring rainfall.


1998 ◽  
Vol 49 (7) ◽  
pp. 1141 ◽  
Author(s):  
M-G. Batson

Renovation of pastures dominated by bent grass (Agrostis castellana), by killing the vegetation with herbicides followed by cultivation and re-sowing, according to current recommendations, can kill up to 95% of the bent grass. To improve the success of killing bent grass and reducing the likelihood of regeneration from rhizomes after renovation, the behaviour of rhizomes after fragmentation was studied in pots. Rhizomes were cut into different lengths (15, 40, and 100 mm) to contain 1, 3, and 8 nodes per section and planted at depths of 25, 50, 75, 100, and 200 mm in cultivated soil, with or without competition from establishing seedlings of perennial ryegrass and white clover. The proportion of bent grass shoots developing from buried rhizomes was reduced to <10% when rhizomes were broken into sections containing only a single node and buried at or below 75 mm. Even after 3 months burial, an average of 0, 0·2, and 0·4 nodes in 1-node, 3-node, and 8-node sections, respectively, were still viable after fragmentation and could potentially develop, should conditions change, ensuring regeneration. The presence of newly sown pasture did not affect either the development of nodes or the vigour of shoots of bent grass during the 3-month measurement period. Pasture production, however, was reduced with increasing bent grass shoot production such that 8-node sections buried at 25 and 50 mm produced up to 3 times more dry matter per pot than other pasture components, giving bent grass a competitive advantage.


Author(s):  
C.C. Boswell ◽  
A.J.M. Crawford

The contribution of perennial ryegrass to pasture production is dependent on the stage of development of the pasture, climate and pasture management. Although variability in the percentage of ryegrass in improved pastures is less than in developing pastures, changes in the ryegrass component in response to different managemcnts can be marked. Tiller counts demonstrated a lower population of ryegrass tillers under rotational grazing by cattle than under sheep. This was increased by changing either from cattle to sheep grazing or by hard set stocking with sheep during spring. Grazing to 3 cm produced more dense ryegrass pasture than grazing to 6 cm. Severity of grazing appeared to be particularly important in dry conditions when grazing below 3 cm is likely to reduce tiller density. A range of management options is therefore available to encourage the perennial ryegrass component, and thus total dry matter production, of improved pasture.


2017 ◽  
Vol 155 (9) ◽  
pp. 1381-1393 ◽  
Author(s):  
J. McDONAGH ◽  
T. J. GILLILAND ◽  
M. McEVOY ◽  
L. DELABY ◽  
M. O'DONOVAN

SUMMARYPerennial ryegrass and white clover (WC) have been shown to form compatible mixtures for pasture production under temperate climates. The inclusion of WC has the potential to enhance the performance of grass swards, but the extent of the improvement under contrasting grazing management strategies is unclear. Grazing rotation and fertilizer nitrogen (N) use have been identified as two major factors that can influence the performance of grass–clover swards. The objective of the current study was to examine the effect of differing grazing rotation lengths and the level of N application on the dry matter (DM) yield performance of grass–clover and grass-only swards as well as on WC productivity and persistency under animal grazing. Swards were managed by N application and grazing rotation length: High-N swards were managed on a 21-day grazing rotation (Man 1) and low-N swards were managed on a 30-day grazing rotation (Man 2). The four treatments were: 250 kg N/ha without WC (HN−C), 250 kg N/ha with WC (HN+C), 100 kg N/ha N without WC (LN−C) and 100 kg N/ha with WC (LN+C). There was a significant management × WC interaction over the 3 years for annual DM yield. The LN−C swards produced lower DM yield (−1917 kg DM/ha) than the swards of the other three treatments (11 167 kg DM/ha). Management had a significant effect on annual DM yield with Man 1 swards yielding 801 kg DM/ha more than Man 2 swards (10 288 kg DM/ha). The inclusion of WC yielded significantly more annual DM yield (+1009 kg DM/ha) than grass-only swards. Notably, LN+C produced the same annual total DM yield as swards under High N and a 21-day grazing rotation. Total WC DM yield and proportion across the year was altered significantly by management. Higher N fertilized swards at shorter grazing intervals had a lower WC DM yield (−1544 kg DM/ha) and proportion (−0·13). Dry matter yield of WC with low N application can be similar to that at high N levels if rotation length is used as a mechanism to determine grazing timing. Variations in WC productivity into the final year of the experiment indicate that persistence of significant contributions to DM yield by WC under low N at longer grazing intervals remains unclear after 3 years.


Author(s):  
B. Willoughby ◽  
P. Addison

Clover root weevil (Sitona lepidus) is established in Auckland, Waikato and Bay of Plenty provinces. A pasture survey in 1997 estimated that the rate of its spread at about 35 km annually. Adults feed on the foliage and larvae on roots and nodules of white clover. Pasture populations appear to be 10 times higher in New Zealand than in the UK. New Zealand's temperate climate and high clover content in pastures may offer a very favourable environment for S. lepidus, with serious implications for New Zealand's pastoral farming. Keywords: clover root weevil, pasture pests, Sitona lepidus, Trifolium repens, white clover


Author(s):  
E.R. Thorn

Volunteer summer-growing paspalum is often present in dairy pastures of northern New Zealand. When paspalum becomes the dominant grass winter/spring pasture production is reduced. This creates management problems on seasonal dairy farms because cow feed requirements and milkfat production are highest in winter/spring. This paper gives data from a current experiment at Ruakura Agricultural Research Station in which Roundup herbicide was used to provide a competitlon-free environment for the overdrilling of cool-season pasture species. Herbicide rates of 6, 4, 2 and 0 l/ha were applied in autumn 1965 before overdrilling a mixture of Ellett ryagrass and Grasslands Kopu white clover. A fifth treatment was the original pasture which was not sprayed or overdrilled. High rates (4-6 I/ha) of Roundup completely elimmated paspalum from the pasture and immediately reduced the white clover to a low proportion (less than 10% of dry matter). The sprayed and overdrilled pastures have remained ryegrass dominant over the duration of the experiment. In 1985 and 1966, winter/spring production from the new ryegrass dominant pastures were significantly better than from the original paspalum dominant pasture. The implications of the noticeable increase in paspalum in the renewed pastures are discussed. Keywords: pasture renewal, pasture renovation, Roundup herbicide, pasture botanical composition, seasonal pasture productlo".


Sign in / Sign up

Export Citation Format

Share Document