scholarly journals Replacement of the cable-stayed bridges over the river Rhine in Leverkusen and Duisburg

2020 ◽  
Author(s):  
Michael Müller ◽  
Wolfgang Eilzer ◽  
Fernando Gutierrez ◽  
Rafael Rodriguez

This paper deals with the replacement of existing highway bridges by the example of two bridges over the river Rhine in Duisburg-Neuenkamp and in Leverkusen. Both mainly welded cable stayed bridges are under traffic since circa 1970 - 1965 and are constructed as welded steel girder bridges with an orthotropic bridge deck. Recent damages ito the steel structure of the bridge deck reduced the service lives of both bridges significantly, therefore, the bridges needed to be replaced within a short time, while maintaining the traffic during all construction stages. The replacement strategies, traffic changes during construction and the design requirements are described in the following. Both existing bridges in Leverkusen and Duisburg-Neuenkamp are under traffic since built in 1965 respectively 1970 (Figure 2). They are cable-stayed bridges and constructed as steel girders with orthotropic bridge decks. Most parts of the bridges are welded. The bridge over the Rhine near Duisburg­Neuenkamp is one of the first completely welded bridges in Germany. Currently more than 100’000 vehicles per day pass the bridges, with a portion of more than 10 % heavy lorries. Due to the increasing traffic, in connection with some inadequate fatigue design, details a steady increase of damages in steel bridges is noted on many steel bridges such as in Duisburg-Neuenkamp and in Leverkusen.  The construction of the new bridge is planeed with a temporary lateral off-set of about 14.40 m. After that, the existing bridge can be dismantled. Then the northern bridge is to be built in its final position and finally, the southern bridge has to be launched in transverse direction into its final position (Figure 3) and the connections to the road network is finalized. The Leverkusen bridge with a main span of 280 meters is also a 2 deck solution, where the northern bridge is built first in its final position, than after dismantling of the existing bridge, the southern bridge can be built in its final position.

2010 ◽  
Vol 163-167 ◽  
pp. 122-126 ◽  
Author(s):  
Ru Deng Luo ◽  
Mei Xin Ye ◽  
Ye Zhi Zhang

Orthotropic monolithic steel bridge deck system stiffened by U rib is very fit for high-speed railway steel bridges because of its excellent mechanical behaviors. Thickness of flange is a very important parameter of U rib and has influence on mechanical behaviors of orthotropic monolithic steel bridge deck system. Based on the engineering practice of Anqing Yangtze River Railway Grand Bridge, the kind and the extents of influences of thickness of flange of U rib on mechanical behaviors of orthotropic monolithic steel bridge deck system are studied with finite element analysis. The results show that thickness of flange of U rib has relative large positive influences on rigidity, strength and stability of orthotropic monolithic steel bridge deck system. 14~18mm is the appropriate range of thickness of flange of U rib for high-speed railway steel bridges.


2022 ◽  
Vol 28 (2) ◽  
pp. 93-105
Author(s):  
Muhammad Khalid Hafiz ◽  
Qaiser-uz-Zaman Khan ◽  
Sohaib Ahmad

Different researchers have performed seismic hazard assessment studies for Pakistan using faults sources which differ from Building Code of Pakistan (BCP 2007) with diverse standard deviations. The results of seismic hazard studies indicate that BCP requires gross revision considering micro and macro level investigations. The recent earthquakes in Pakistan also damaged bridge structures and some studies have been conducted by different researchers to investigate capacity of existing bridges. The most of bridge stock in Pakistan has been designed assuming seismic loads as 2%, 4% and 6% of dead loads following West Pakistan Code of Practice for Highway Bridges. The capacity of eight selected real bridges, two from each seismic zone 2A, 2B, 3 & 4 is checked against BCP demands. Static and dynamic analyses were performed and the piers were checked for elastic limits. It is established that piers are on lower side in capacity and the bridges in zone 2A are generally less vulnerable. Whereas the bridges in zone 2B, 3 and 4 are vulnerable from medium to very high level. Hence, an in-depth analytical vulnerability study of bridge stock particularly in high-risk zone needs to be conducted on priority and appropriate seismic retrofitting schemes need to be proposed.


Author(s):  
Philippe Menétrey ◽  
Lionel Moreillon ◽  
Maléna Bastien-Masse

<p>Paudèze bridges are two 400‐m long parallel highway bridges located in Switzerland and opened to traffic in 1974. After over 40 years of service life, both bridges must be completely rehabilitated and strengthened while constantly maintaining 2 traffic lanes in both directions.</p><p>The bridge deck slab was strengthened using UHPFRC (Ultra‐High Performance Fiber Reinforced Concrete) struts. These inclined struts connect the end of the deck slab cantilever and the box girder web, forming a Warren truss. They thus reduce the bending moments in the deck slab and the existing steel reinforcement could be kept.</p><p>The joint between the prefabricated UHPFRC struts and the existing concrete web is done through a cast in‐ place UHPFRC beam, without any mechanical connection. Forces go through the joint and into the web by a combination of friction and compression forces.</p><p>Various experimental tests and numerical simulations confirmed the feasibility of this solution. In particular, the UHPFRC‐concrete web connection, the UHPFRC‐UHPFRC connection and the global behavior of the strut were tested and modelled.</p><p>The strengthening of the bridges decks took place between 2017 and 2019. The developed solution, using UHPFRC struts, was shown to be very effective to strengthen the deck and creates a rhythm in the structure.</p>


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3460 ◽  
Author(s):  
Hoofar Shokravi ◽  
Hooman Shokravi ◽  
Norhisham Bakhary ◽  
Mahshid Heidarrezaei ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle’s speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 2378-2387
Author(s):  
Weijian Wu ◽  
Henk Kolstein ◽  
Milan Veljković ◽  
Richard Pijpers ◽  
Jos Vorstenbosch-Krabbe

2010 ◽  
Vol 452-453 ◽  
pp. 161-164 ◽  
Author(s):  
Chun Sheng Wang ◽  
Qin Zhang ◽  
Tao Zhang ◽  
Ya Cheng Feng

The modern steel orthotropic decks have been used in steel bridges for 60 years all over the world because of its super structural advantages. Recently, more bridge owners, engineers and researchers pay more attention to the fatigue problem of orthotropic steel decks for a large number of fatigue cracks found in steel bridges. For example, bridge engineers have detected hundreds of fatigue cracks in steel orthotropic deck on the 888-meter long box girder of Humen Bridge only ten years after opening to traffic. How to design or repair the fatigue details in orthotropic steel decks is the critical question to be solved at first step. In current paper, the elaborate numerical analysis model of the orthotropic steel bridge decks was developed using ANSYS software with different floor-beam web cutouts shapes, such as conventional ellipse, circular, trapezoid and Haibach web cutouts. The finite element models were calibrated by static test of one full size orthotropic steel bridge deck model. According to the analysis results, it should select the rational cutout shapes based on actual load and structural conditions in steel bridge deck design and strengthening.


2015 ◽  
Vol 1111 ◽  
pp. 110-115
Author(s):  
Silvia Mihaela Hernea ◽  
Dorel Boldus ◽  
Anamaria Feier

This paper presents a procedure based on fracture mechanics to predict the evolution of cracks detected in a part of steel bridge deck, still in operation, and establishing thus remaining lifetime below a certain range of application from future traffic. It is also described an experimental program conducted on samples from available material, to determine the material factors “C” and “m” involved in Paris formula and their use in a calculation procedure for simulating crack growth detected. Finally is presented a comparison with results obtained from a classical calculation method, the cumulative damage rule of Palmergren-Miner.


Sign in / Sign up

Export Citation Format

Share Document