scholarly journals Vehicle-Assisted Techniques for Health Monitoring of Bridges

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3460 ◽  
Author(s):  
Hoofar Shokravi ◽  
Hooman Shokravi ◽  
Norhisham Bakhary ◽  
Mahshid Heidarrezaei ◽  
Seyed Saeid Rahimian Koloor ◽  
...  

Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle’s speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.

2005 ◽  
Vol 32 (1) ◽  
pp. 270-278 ◽  
Author(s):  
Alan O'Connor ◽  
Eugene J O'Brien

Design and assessment of highway bridges requires accurate prediction of the extreme load effects expected during the proposed or remaining life of the structure. Traditionally these effects are calculated using conservative codified deterministic loading models. While this conservatism is relatively insignificant in design, it may be critical in assessment. Advances in weigh-in-motion (WIM) technology, i.e., the process of weighing trucks travelling at full highway speeds, have increased the availability of accurate and unbiased site-specific traffic records. Assessments performed using WIM data are generally accepted as less conservative than those performed using generalized codified loading models. This paper briefly describes traffic simulation using WIM statistics. The implications of the accuracy of the recorded data and the duration of recording and of the sensitivity of the extreme to the method of prediction are investigated. Traffic evolution with time is also explored. The conclusions are of interest to engineers performing assessment of existing bridges.Key words: bridge, load effects, characteristic values, simulation, traffic flow, Monte Carlo, weigh-in-motion.


2010 ◽  
Vol 452-453 ◽  
pp. 805-808
Author(s):  
F. Yue ◽  
X.S. Ren ◽  
M. Chen ◽  
Y.Y. Miao ◽  
M.Y. Li ◽  
...  

This paper is focused on developing fatigue-load model for highway bridges based on the measurements data of WIM (Weigh-in-Motion) in China. In this paper, based on the analysis of vehicle flow data collected from six toll stations on Jing-Fu Highway which is one of the busiest highways in China, spring festival index and month index of vehicle flow are obtained. The finite element models are established, and the vehicle flows are modelled by using Monte Carlo method as dynamic load applied on the nodes of the models. This paper presents a fatigue truck model for Jing-Fu Highway bridges, which may also be used for other highway bridges in China. In order to validate the model, strain time histories were obtained through field strain measurements for 3 existing bridges on this highway. In addition, comparison among the model introduced in this paper and the models in foreign codes as well as the models developed by other researchers is presented.


2016 ◽  
Vol 11 (3) ◽  
pp. 197-204
Author(s):  
Zigang Xu ◽  
Qiang Han ◽  
Junfeng Jia ◽  
Zilan Zhong ◽  
Chao Huang

In order to assess the vehicle load carrying capacity of existing bridges on the national highway G103 in Beijing, the vehicle load model for the practical traffic flow conditions needs to be determined. Based on the traffic axle load data measured by the weigh-in-motion system and the methods proposed by General Code for Design of Highway Bridges and Culverts (JTG D60-2004) and Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts (JTG D62-2004), the vehicle load parameters under practical traffic flow conditions are investigated. A typical 6-axle vehicle model with a 2-1-3 axial pattern is proposed by using the statistical analysis of total weight, axial weight, etc. The live load effects of Daliushu No. 2 Bridge, one highway bridge on the national highway G103, are analyzed using the proposed model and compared to the vehicle load model given in the Chinese code. The results show that there are great differences in the vehicle load parameters and the live load effects from the proposed vehicle load model increased by 20–50% compared with the model given by the code. The overweight vehicles are potential threats to the safety of existing bridges.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4336
Author(s):  
Piervincenzo Rizzo ◽  
Alireza Enshaeian

Bridge health monitoring is increasingly relevant for the maintenance of existing structures or new structures with innovative concepts that require validation of design predictions. In the United States there are more than 600,000 highway bridges. Nearly half of them (46.4%) are rated as fair while about 1 out of 13 (7.6%) is rated in poor condition. As such, the United States is one of those countries in which bridge health monitoring systems are installed in order to complement conventional periodic nondestructive inspections. This paper reviews the challenges associated with bridge health monitoring related to the detection of specific bridge characteristics that may be indicators of anomalous behavior. The methods used to detect loss of stiffness, time-dependent and temperature-dependent deformations, fatigue, corrosion, and scour are discussed. Owing to the extent of the existing scientific literature, this review focuses on systems installed in U.S. bridges over the last 20 years. These are all major factors that contribute to long-term degradation of bridges. Issues related to wireless sensor drifts are discussed as well. The scope of the paper is to help newcomers, practitioners, and researchers at navigating the many methodologies that have been proposed and developed in order to identify damage using data collected from sensors installed in real structures.


2021 ◽  
Vol 11 (11) ◽  
pp. 5057
Author(s):  
Wan-Yu Yu ◽  
Xiao-Qiang Huang ◽  
Hung-Yi Luo ◽  
Von-Wun Soo ◽  
Yung-Lung Lee

The autonomous vehicle technology has recently been developed rapidly in a wide variety of applications. However, coordinating a team of autonomous vehicles to complete missions in an unknown and changing environment has been a challenging and complicated task. We modify the consensus-based auction algorithm (CBAA) so that it can dynamically reallocate tasks among autonomous vehicles that can flexibly find a path to reach multiple dynamic targets while avoiding unexpected obstacles and staying close as a group as possible simultaneously. We propose the core algorithms and simulate with many scenarios empirically to illustrate how the proposed framework works. Specifically, we show that how autonomous vehicles could reallocate the tasks among each other in finding dynamically changing paths while certain targets may appear and disappear during the movement mission. We also discuss some challenging problems as a future work.


2004 ◽  
Vol 86 (3) ◽  
pp. 247-256 ◽  
Author(s):  
M.Imran Rafiq ◽  
Marios K. Chryssanthopoulos ◽  
Toula Onoufriou

1998 ◽  
Vol 25 (4) ◽  
pp. 631-639 ◽  
Author(s):  
G Thater ◽  
P Chang ◽  
D R Schelling ◽  
C C Fu

A methodology is developed to more accurately estimate the static response of bridges due to moving vehicles. The method can also be used to predict dynamic responses induced by moving vehicles using weigh-in-motion (WIM) techniques. Historically, WIM is a well-developed technology used in highway research, since it has the advantage of allowing for the stealthy automatic collection of weight data for heavy trucks. However, the lack of accuracy in determining the dynamic effect in bridges has limited the potential for its use in estimating the fatigue life of bridge structures and their components. The method developed herein amends the current WIM procedures by filtering the dynamic responses accurately using the Fast Fourier Transform (FFT). Example applications of the proposed method are shown by using computer-generated data. The method is fast and improves the predicted truck weight up to 5% of the actual weight, as compared to errors up to 10% using the current WIM methods.Key words: weigh-in-motion, digital filters, FFT, bridge dynamics, in-service testing.


2021 ◽  
Author(s):  
Guy L. Larose ◽  
Pierre-Olivier Dallaire ◽  
Theresa Erskine ◽  
Chiara Pozzuoli ◽  
Emanuele Mattiello

<p>This paper introduces the methodology RWDI has developed, tested and consolidated over the years working in close collaboration with bridge designers, owners and operators, for the multi-hazard assessment of existing bridges and the ad hoc development of a structural health monitoring programme leading to enhanced resiliency. The work is highlighted through the presentation of a case study for a 2,725 m long cantilever bridge built in 1930. The dynamics of the structure in its current state were characterised and its capacity to today and future wind loading was assessed fully following the proposed methodology prior to the initiation of a structural rehabilitation program to extend the design life of the bridge beyond its 150th anniversary.</p>


Sign in / Sign up

Export Citation Format

Share Document