scholarly journals Retraction of: Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways

2021 ◽  
Vol 55 (4) ◽  
pp. 527-527

2021 ◽  
Vol 520 ◽  
pp. 111070
Author(s):  
Yaqiu Hu ◽  
Hairong Zhao ◽  
Jiaming Lu ◽  
De Xie ◽  
Qiang Wang ◽  
...  


2018 ◽  
Vol 47 (3) ◽  
pp. 1074-1083 ◽  
Author(s):  
Ying Xin ◽  
Kun Wang ◽  
Zhaotong Jia ◽  
Tao Xu ◽  
Qiang Xu ◽  
...  

Background/Aims: Zurampic is a US FDA approved drug for treatment of gout. However, the influence of Zurampic on pancreatic β-cells remains unclear. The study aimed to evaluate the effects of Zurampic on high uric acid-induced damage of pancreatic β-cells and the possible underlying mechanisms. Methods: INS-1 cells and primary rat islets were stimulated with Zurampic and the mRNA expression of urate transporter 1 (URAT1) was assessed by qRT-PCR. Cells were stimulated with uric acid or uric acid plus Zurampic, and cell viability, apoptosis and ROS release were measured by MTT and flow cytometry assays. Western blot analysis was performed to evaluate the expressions of active Caspase-3 and phosphorylation of AMPK and ERK. Finally, cells were stimulated with uric acid or uric acid plus Zurampic at low/high level of glucose (2.8/16.7 mM glucose), and the insulin release was assessed by ELISA. Results: mRNA expression of URAT1 was decreased by Zurampic in a dose-dependent manner. Uric acid decreased cell viability, promoted cell apoptosis and induced ROS release. Uric acid-induced alterations could be reversed by Zurampic. Activation of Caspase-3 and phosphorylation of AMPK and ERK were enhanced by uric acid, and the enhancements were reversed by Zurampic. Decreased phosphorylation of AMPK and ERK, induced by Zurampic, was further reduced by adding inhibitor of AMPK or ERK. Besides, uric acid inhibited high glucose-induced insulin secretion and the inhibition was rescued by Zurampic. Conclusions: Zurampic has a protective effect on pancreatic β-cells against uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathway.



2005 ◽  
Vol 15 (4) ◽  
pp. 1181-1184 ◽  
Author(s):  
Boris Ročić ◽  
Marijana Vučić-Lovrenčić ◽  
Nevenka Poje ◽  
Mirko Poje ◽  
Federico Bertuzzi


2018 ◽  
Vol 102 ◽  
pp. 1120-1126 ◽  
Author(s):  
Ying Xin ◽  
Haiyan Zhang ◽  
Zhaotong Jia ◽  
Xiaoqian Ding ◽  
Yong Sun ◽  
...  


1968 ◽  
Vol 59 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Lars-Ake Idahl ◽  
Bo Hellman

ABSTRACT The combination of enzymatic cycling and fluorometry was used for measuring glucose and glucose-6-phosphate in pancreatic β-cells from obese-hyperglycaemic mice. The glucose level of the β-cells corresponded to that of serum over a wide concentration range. In the exocrine pancreas, on the other hand, a significant barrier to glucose diffusion across the cell membranes was demonstrated. During 5 min of ischaemia, the glucose level remained practically unchanged in the β-cells while it increased in the liver and decreased in the brain. The observation that the pancreatic β-cells are characterized by a relatively low ratio of glucose-6-phosphate to glucose may be attributed to the presence of a specific glucose-6-phosphatase.



Sign in / Sign up

Export Citation Format

Share Document