scholarly journals Evidence of Coordinated and Adjustable Osmolytes Movements Following Hyposmotic Swelling in Rainbow Trout Red Blood Cells

2021 ◽  
Vol 55 (S1) ◽  
pp. 185-195
Author(s):  
Valérie Maxime ◽  

BACKGROUND/AIMS: The osmolytes involved in the volume regulation of hyposmotically-swollen fish cells are well identified. However, if a coordination and adjustments of their fluxes are obvious, few studies have clearly illustrated these aspects. METHODS: Trout red blood cells volume variations were estimated from water contents obtained by a gravimetric method. Intracellular K+ and Na+ contents, and Cl- content of haemolysed cells were determined by photometry and colorimetry, respectively. The taurine contribution to cell volume regulation was calculated from the net changes of water, K+, Cl- and Na+ contents. The intracellular pH was calculated from the chloride distribution across the cells membranes according to the Donnan equilibrium. RESULTS: Cells responses to a rapid change (from 296 to 176 mOsm.kg-1)
of the saline osmolality were examined in three conditions designed to not impact (Hypo. I)
or to reduce the K+ (Hypo. II) and Cl- (Hypo. III) contributions to the volume regulation. Hypo. I condition caused an immediate increase in water content, followed by a 90 min. full regulation, concomitant with gradual lowering of K+ and Cl- contents and a surprising increase in Na+ content. Hypo. II and III conditions showed a partial and complete volume regulation, respectively. This was made possible by an increase in the taurine involvement. These experiments allowed to confirm that K+ and Cl- were released via KCl cotransport and by separate channels. The comparison of Hypo. I and III conditions led to the observation that the partially amiloride-sensitive Na+ influx is proportional to the taurine efflux; the latter being sustained mainly by a Na+/taurine cotransport. The Hypo. II condition was suitable for the (Na+/K+)ATPase activity inhibition. This effect could explain the observed lack of Na+ uptake, the consecutive depletion of intracellular taurine stock and the incomplete volume regulation. Finally, the results support the importance of taurine in pH control under Hypo. I (physiologic) condition. The alkalosis observed in Hypo. II and III conditions were the consequences of changes in the salines compositions, not of physiologic adjustments. CONCLUSION: The regulatory volume decrease process of trout RBCs is complex and adjustable through coordinated osmolytes movements. The obliged decrease in K+ and/or Cl- contributions stimulates taurine and Na+ pathways. This study highlights the importance of taurine as a compensatory variable in cell volume regulation and explains for the first time the significance of the Na+ uptake during this process

1980 ◽  
Vol 76 (6) ◽  
pp. 683-708 ◽  
Author(s):  
P M Cala

After osmotic perturbation, the red blood cells of Amphiuma exhibited a volume-regulatory response that returned cell volume back to or toward control values. After osmotic swelling, cell-volume regulation (regulatory volume decrease; RVD) resulted from net cellular loss of K, Cl, and osmotically obliged H2O. In contrast, the volume-regulatory response to osmotic shrinkage (regulatory volume increase; RVI) was characterized by net cellular uptake of Na, Cl, and H2O. The net K and Na fluxes characteristic of RVD and RVI are increased by 1-2 orders of magnitude above those observed in studies of volume-static control cells. The cell membrane potential of volume-regulating and volume-static cells was measured by impalement with glass microelectrodes. The information gained from the electrical and ion-flux studies led to the conclusion that the ion fluxes responsible for cell-volume regulation proceed via electrically silent pathways. Furthermore, it was observed that Na fluxes during RVI were profoundly sensitive to medium [HCO3] and that during RVI the medium becomes more acid, whereas alkaline shifts in the suspension medium accompany RVD. The experimental observations are explained by a model featuring obligatorily coupled alkali metal-H and Cl-HCO3 exchangers. The anion- and cation-exchange pathways are separate and distinct yet functionally coupled via the net flux of H. As a result of the operation of such pathways, net alkali metal, Cl, and H2O fluxes proceed in the same direction, whereas H and HCO3 fluxes are cyclic. Data also are presented that suggest that the ion-flux pathways responsible for cell-volume regulation are not activated by changes in cell volume per se but by some event associated with osmotic perturbation, such as changes in intracellular pH.


1983 ◽  
Vol 82 (6) ◽  
pp. 761-784 ◽  
Author(s):  
P M Cala

In response to osmotic perturbation, the Amphiuma red blood cell regulates volume back to "normal" levels. After osmotic swelling, the cells lose K, Cl, and osmotically obliged H2O (regulatory volume decrease [RVD] ). After osmotic shrinkage, cell volume is regulated as a result of Na, Cl, and H2O uptake (regulatory volume increase [RVI] ). As previously shown (Cala, 1980 alpha), ion fluxes responsible for volume regulation are electroneutral, with alkali metal ions obligatorily counter-coupled to H, whereas net Cl flux is in exchange for HCO3. When they were exposed to the Ca ionophore A23187, Amphiuma red blood cells lost K, Cl, and H2O with kinetics (time course) similar to those observed during RVD. In contrast, when cells were osmotically swollen in Ca-free media, net K loss during RVD was inhibited by approximately 60%. A role for Ca in the activation of K/H exchange during RVD was suggested from these experiments, but interpretation was complicated by the fact that an increase in cellular Ca resulted in an increase in the membrane conductance to K (GK). To determine the relative contributions of conductive K flux and K/H exchange to total K flux, electrical studies were performed and the correspondence of net K flux to thermodynamic models for conductive vs. K/H exchange was evaluated. These studies led to the conclusion that although Ca activates both conductive and electroneutral K flux pathways, only the latter pathways contribute significantly to net K flux. On the basis of observations that A23187 did not activate K loss from cells during RVI (when the Na/H exchange was functioning) and that amiloride inhibited K/H exchange by swollen cells only when cells had previously been shrunk in the presence of amiloride, I concluded that Na/H and K/H exchange are mediated by the same membrane transport moiety.


1977 ◽  
Vol 69 (5) ◽  
pp. 537-552 ◽  
Author(s):  
PM Cala

The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.


1979 ◽  
Vol 237 (1) ◽  
pp. C10-C16 ◽  
Author(s):  
J. C. Parker

Dog red blood cells accumulate Ca rapidly when deprived of substrate or cooled to 5 degrees C. The latter effect is reversible as the cells are rewarmed to body temperature. Resealed ghosts extrude Ca, provided ATP is incorporated in them. Passive fluxes of Ca are stimulated by Na on the opposite side of the membrane, consistent with a model for Ca-Na countertransport. Quinidine, cell shrinkage, and low pH--all known to suppress net Ca influx--have no accelerating effect on Ca efflux, thus validating earlier conclusions about the variability of the coupling ratio for Ca-Na exchange. The significance of these findings for cell volume regulation is discussed.


1990 ◽  
Vol 259 (6) ◽  
pp. F950-F960 ◽  
Author(s):  
N. A. McCarty ◽  
R. G. O'Neil

The mechanism underlying the activation of hypotonic cell volume regulation was studied in rabbit proximal straight tubule (PST). When isolated non-perfused tubules were exposed to hypotonic solution, cells swelled rapidly and then underwent a regulatory volume decrease (RVD). The extent of regulation after swelling was highly dependent on extracellular Ca concentration ([Ca2+]o), with a half-maximal inhibition (K1/2) for [Ca2+]o of approximately 100 microM. RVD was blocked by the Ca-channel blockers verapamil, lanthanum, and the dihydropyridines (DHP) nifedipine and nitrendipine, implicating voltage-activated Ca channels in the RVD response. Using the fura-2 fluorescence-ratio technique, we observed that cell swelling caused a sustained rise in intracellular Ca ([Ca2+]i) only when [Ca2+]o was normal (1 mM) but not when [Ca2+]o was low (1-10 microM). Furthermore, external Ca was required early on during swelling to induce RVD. If RVD was initially blocked by reducing [Ca2+]o or by addition of verapamil during hypotonic swelling, volume regulation could only be restored by subsequently inducing Ca entry within the first 1 min or less of exposure to hypotonic solution. These data indicate a "calcium window" of less than 1 min, during which RVD is sensitive to Ca, and that part of the Ca-dependent mechanism responsible for achieving RVD undergoes inactivation after swelling. It is concluded that RVD in rabbit PST is modulated by Ca via a DHP-sensitive mechanism in a time-dependent manner.


1991 ◽  
Vol 260 (1) ◽  
pp. C122-C131 ◽  
Author(s):  
K. Drewnowska ◽  
C. M. Baumgarten

Video microscopy was used to study the regulation of cell volume in isolated rabbit ventricular myocytes. Myocytes rapidly (less than or equal to 2 min) swelled and shrank in hyposmotic and hyperosmotic solutions, respectively, and this initial volume response was maintained without a regulatory volume decrease or increase for 20 min. Relative cell volumes (normalized to isosmotic solution, 1T) were as follows: 1.41 +/- 0.01 in 0.6T, 1.20 +/- 0.04 in 0.8T, 0.71 +/- 0.04 in 1.8T, and 0.57 +/- 0.03 in 2.6T. These volume changes were significantly less than expected if all of the measured volume was osmotically active water. Changes in width and thickness were significantly greater than changes in cell length. The idea that cotransport contributes to cell volume regulation was tested by inhibiting Na(+)-K(+)-2Cl- cotransport with bumetanide (BUM) and Na(+)-Cl- cotransport with chlorothiazide (CTZ). Under isotonic conditions, a 10-min exposure to BUM (1 microM), CTZ (100 microM), or BUM (10 microM) plus CTZ (100 microM) decreased relative cell volume to 0.87 +/- 0.01, 0.86 +/- 0.02, and 0.82 +/- 0.04, respectively. BUM plus CTZ also modified the response to osmotic stress. Swelling in 2.6T medium was 76% greater and shrinkage in 0.6T medium was 29% less than in the absence of diuretics. In contrast to the rapid effects of diuretics, inhibition of the Na(+)-K+ pump with 10 microM ouabain for 20 min did not affect cell volume in 1T solution. Nevertheless, ouabain decreased swelling in 0.6T medium by 52% and increased shrinkage in 1.8T medium by 34%. These data suggest that under isotonic conditions Na(+)-K(+)-2Cl- and Na(+)-Cl- cotransport are critical in establishing cell volume, but osmoregulation can compensate for Na(+)-K+ pump inhibition for at least 20 min. Under anisotonic conditions, the Na(+)-K+ pump and Na(+)-K(+)-2Cl- and/or Na(+)-Cl- cotransport are important in myocyte volume regulation.


1990 ◽  
Vol 258 (5) ◽  
pp. R1217-R1223 ◽  
Author(s):  
K. G. Dickman ◽  
L. Goldstein

The role of K transport during cell volume regulation in response to extracellular osmolality, protein kinase C activation, and cellular Ca was examined in skate (Raja erinacea) red blood cells (RBC). Reduction of medium osmolality from 960 to 660 mosmol/kgH2O had no effect on K uptake or efflux despite a 25% increase in cell volume. Further reduction to 460 mosmol/kgH2O caused K uptake to double and K efflux to triple resulting in net K loss. Net K efflux in 460 mosmol/kgH2O medium was correlated with the presence of a regulatory volume decrease, which was sensitive to the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and insensitive to chloride replacement. K-K exchange was absent in both isotonic and hypotonic media. Treatment with the Ca ionophore A23187 in the presence of Ca had no effect on either cell volume or K efflux in isotonic medium, indicating the absence of Ca-activated K transport. In contrast, phorbol ester treatment caused cell volume, Na content, and proton and K efflux to increase. Consistent with activation of Na-H exchange, phorbol ester effects were inhibited by dimethylamiloride. This study constitutes the first demonstration of volume-sensitive K transport in RBC from the most primitive vertebrate studied to date.


1997 ◽  
Vol 273 (2) ◽  
pp. C360-C370 ◽  
Author(s):  
J. C. Summers ◽  
L. Trais ◽  
R. Lajvardi ◽  
D. Hergan ◽  
R. Buechler ◽  
...  

To gain insight into the mechanism(s) by which cells sense volume changes, specific predictions of the macromolecular crowding theory (A. P. Minton. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181-190. A. P. Minton, C. C. Colclasure, and J. C. Parker. Proc. Natl. Acad. Sci. USA 89: 10504-10506, 1992) were tested on the volume of internally perfused barnacle muscle cells. This preparation was chosen because it allows assessment of the effect on cell volume of changes in the intracellular macromolecular concentration and size while maintaining constant the ionic strength, membrane stretch, and osmolality. The predictions tested were that isotonic replacement of large macromolecules by smaller ones should induce volume decreases proportional to the initial macromolecular concentration and size as well as to the magnitude of the concentration reduction. The experimental results were consistent with these predictions: isotonic replacement of proteins or polymers with sucrose induced volume reductions, but this effect was only observed when the replacement was > or = 25% and the particular macromolecule had an average molecular mass of < or = 20 kDa and a concentration of at least 18 mg/ml. Volume reduction was effected by a mechanism identical with that of hypotonicity-induced regulatory volume decrease, namely, activation of verapamil-sensitive Ca2+ channels.


2003 ◽  
Vol 122 (2) ◽  
pp. 177-190 ◽  
Author(s):  
Herve Barriere ◽  
Radia Belfodil ◽  
Isabelle Rubera ◽  
Michel Tauc ◽  
Florian Lesage ◽  
...  

Several papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene. This allows for the precise localization of TASK2 in kidney sections using β-galactosidase staining. TASK2 was only localized in PCT cells. K+ currents were analyzed by the whole-cell clamp technique with 125 mM K-gluconate in the pipette and 140 mM Na-gluconate in the bath. In PCT cells from wild-type mice, hypotonicity induced swelling-activated K+ currents insensitive to 1 mM tetraethylammonium, 10 nM charybdotoxin, and 10 μM 293B, but blocked by 500 μM quinidine and 10 μM clofilium. These currents were increased in alkaline pH and decreased in acidic pH. In PCT cells from TASK2 KO, swelling-activated K+ currents were completely impaired. In conclusion, the TASK2 channel is expressed in kidney proximal cells and could be the swelling-activated K+ channel responsible for the cell volume regulation process during osmolyte absorptions in the proximal tubules.


2008 ◽  
Vol 294 (3) ◽  
pp. F582-F590 ◽  
Author(s):  
L. Galizia ◽  
M. P. Flamenco ◽  
V. Rivarola ◽  
C. Capurro ◽  
P. Ford

We previously reported in a rat cortical collecting duct cell line (RCCD1) that the presence of aquaporin 2 (AQP2) in the cell membrane is critical for the rapid activation of regulatory volume decrease mechanisms (RVD) (Ford et al. Biol Cell 97: 687–697, 2005). The aim of our present work was to investigate the signaling pathway that links AQP2 to this rapid RVD activation. Since it has been previously described that hypotonic conditions induce intracellular calcium ([Ca2+]i) increases in different cell types, we tested the hypothesis that AQP2 could have a role in activation of calcium entry by hypotonicity and its implication in cell volume regulation. Using a fluorescent probe technique, we studied [Ca2+]i and cell volume changes in response to a hypotonic shock in WT-RCCD1 (not expressing aquaporins) and in AQP2-RCCD1 (transfected with AQP2) cells. We found that after a hypotonic shock only AQP2-RCCD1 cells exhibit a substantial increase in [Ca2+]i. This [Ca2+]i increase is strongly dependent on extracellular Ca2+ and is partially inhibited by thapsigargin (1 μM) indicating that the rise in [Ca2+]i reflects both influx from the extracellular medium and release from intracellular stores. Exposure of AQP2-RCCD1 cells to 100 μM gadolinium reduced the increase in [Ca2+]i suggesting the involvement of a mechanosensitive calcium channel. Furthermore, exposure of cells to all of the above described conditions impaired rapid RVD. We conclude that the expression of AQP2 in the cell membrane is critical to produce the increase in [Ca2+]i which is necessary to activate RVD in RCCD1 cells.


Sign in / Sign up

Export Citation Format

Share Document