scholarly journals Methods and Algorithms Sound Signals Processing

2020 ◽  
Vol 6 (6) ◽  
pp. 25-40
Author(s):  
U. Abdullayev

This article discusses methods and algorithms for processing sound signals, the purpose and classification of filters, basic digital filters, first-order low and high-pass filters for solving technical problems, including matching signal parameters with the characteristics of the electro-acoustic path.

2016 ◽  
pp. 71-76
Author(s):  
H. Ukhina ◽  
A. Bilenko ◽  
V. Sytnikov

The paper considers improving efficiency of NPP software based I&C during adjustment and readjustment of its characteristics. The research analyzes impact of transfer function coefficient of digital components on features of frequency-response characteristics, which shall be considered during design of software based I&C. The paper objective was to determine the numerator and denominator dependencies of transfer function of first order high-pass and low-pass digital filters of cut-off frequency, and also to determine dependencies on pulsation coefficient.


2002 ◽  
Vol 7 (1) ◽  
pp. 31-42
Author(s):  
J. Šaltytė ◽  
K. Dučinskas

The Bayesian classification rule used for the classification of the observations of the (second-order) stationary Gaussian random fields with different means and common factorised covariance matrices is investigated. The influence of the observed data augmentation to the Bayesian risk is examined for three different nonlinear widely applicable spatial correlation models. The explicit expression of the Bayesian risk for the classification of augmented data is derived. Numerical comparison of these models by the variability of Bayesian risk in case of the first-order neighbourhood scheme is performed.


2021 ◽  
Vol 352 ◽  
pp. 109080
Author(s):  
Joram van Driel ◽  
Christian N.L. Olivers ◽  
Johannes J. Fahrenfort

Author(s):  
Vladimir I. Karnyshev ◽  
◽  
Vladimir I. Avdzeyko ◽  
Evgenia S. Paskal ◽  
◽  
...  

The forecasting of development trends and the timely revealing of new technical (technological) fields are the key prerequisite for an effective development of modern economy. Only reliable results of technological analysis (forecast) allow identifying new technologies, understanding the evolution of entire industries, carrying out strategic investment planning at the state level, and also planning R&D correctly. The aim of this work is to justify one of the possible approaches to the classification of technical (technological) fields in terms of assessing their relevance, novelty and short-term prospects. This approach is based on patent analysis, in particular, on the study of the time series features of US invention patents (1976-2018) for more than seventy-three thousand main groups (subgroups) of the 17th edition of the International Patent Classification (IPC17). The United States Patent and Trademark Office (USPTO) has been selected as the primary source of information because it is one of the world’s largest and constantly updated patent resources, providing direct access to full-text descriptions. In the authors’ opinion, a feature analysis of the US patent issue dynamics at time intervals (1976-2015, 2009-2018 and 2016-2018) allows dividing the IPC groups (subgroups) into the following three main clusters: “unpromising”, “promising” and “breakthrough”. In terms of the timely revealing of new, previously unknown, technologies or solutions in the technical field, or of the steadily growing technological trends, the “breakthrough” and “promising” subgroups are of the greatest practical interest. The article presents the results of an empirical classification of 71,266 subgroups (with a non-zero number of the issued patents since 1976 to 2018) in eight sections of the IPC17. These data may be useful for developers, researchers and R&D planners in solving complex scientific and technical problems, as well as for making short-term forecast estimates of a specific technical (technological) field development.


Author(s):  
Emre Cancioglu ◽  
Gokberk Cakiroglu ◽  
Alkim Gokcen ◽  
Yilmaz Sefa Altanay

This study provides design and implementation of four digital filters (low pass, high pass, band pass and band stop) for ECG (electrocardiogram) data on FPGA with MATLAB by a serial communication. The study is conducted with using ECG data which is obtained from PhysioBank Database platform. SysGen (System Generator for DSP) which is a toolbox for MATLAB is used for designing and implementing the digital filters. The aim of the study is to perform four different digital filters with various blocks on the SysGen Toolbox. The study then examines the results of four different digital filters.


Author(s):  
Manoj Kumar Jain

Some time back, Kircay reported an electronically-tunable current-mode square-root-domain first-order filter capable of realizing low-pass (LP), high-pass (HP) and all-pass (AP) filter functions. When simulated in SPICE, Kircay’s circuit has been found to exhibit DC offsets in case of LP and AP responses and incorrect transient response in case of HP response. In this paper, an improved circuit overcoming these difficulties/deficiencies has been suggested and its workability of the improved circuit as well as its capability in meeting the intended objectives has been demonstrated by SPICE simulation results.


1982 ◽  
Vol 11 (3) ◽  
pp. 173-178 ◽  
Author(s):  
A. Parving ◽  
C. Elberling
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document