scholarly journals Effects of Adding CO2 to Low Level H2S Containing Aqueous Environments on the Corrosion and Hydrogen Penetration Behaviors of High-Strength Steel

2021 ◽  
Vol 59 (8) ◽  
pp. 533-544
Author(s):  
Seung Min Ryu ◽  
Jin-seong Park ◽  
Hye Rin Bang ◽  
Sung Jin Kim

The effects of adding CO2 to low level H2S containing aqueous environment on the corrosion and hydrogen penetration behaviors of high-strength steel were evaluated using a range of experimental and analytical methods. The corrosion rate of the steel sample exposed to a low level of H2S dissolved in an aqueous solution was comparatively higher than the one exposed to a mixture of low concentrations of H2S with CO2 dissolved in the aqueous solution. The higher corrosion resistance of the steel in the mixture of low concentrations of H2S and CO2 was attributed primarily to the three-layer structure of corrosion scale, comprised of an outer Fe-oxide, middle FeS1-X, and inner FeCO3, which formed on the steel sample. In particular, the formation of a thin FeCO3 layer with protective and non-conductive nature may serve as an effective barrier against the penetration of aggressive ionic species in solution, as well as hydrogen atoms formed by cathodic reduction or hydrolysis reactions. Consequently, the hydrogen permeation level, which was measured in a mixture of low-level H2S and CO2, was controlled to a comparatively lower value. Nevertheless, the higher level of hydrogen permeation in a mixture of low levels of H2S and CO2 at the early corrosion stage might increase the potential risk of pre-mature failure by hydrogen-assisted cracking.

2014 ◽  
Vol 540 ◽  
pp. 35-38
Author(s):  
Yu Su Song ◽  
Li Qing Zhou ◽  
Guang Zhe Chu

The hydrogen residued process of the High-strength steel surface during the phosphorization process was studied. By the hydrogen permeation experiment, that penetration speed of the hydrogen residued in the metal surface were measured. The result of shows:the more hydrogen gas generated in the process of phosphorization,the more hydrogen atom inside the metal. That means the hydrogen embrittlement criticality of the High-strength steel were more fearful。Dense phosphorizing film always block hydrogen atoms to penetrate into the metal,So that cuold to reduce the hydrogen embrittlement extend of the steel in phosphorization.


CORROSION ◽  
2001 ◽  
Vol 57 (4) ◽  
pp. 295-299 ◽  
Author(s):  
H. L. Li ◽  
K. W. Gao ◽  
L. J. Qiao ◽  
Y. B. Wang ◽  
W. Y. Chu

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1252 ◽  
Author(s):  
Eric Fangnon ◽  
Evgenii Malitckii ◽  
Yuriy Yagodzinskyy ◽  
Pedro Vilaça

Thermal desorption spectroscopy (TDS) is a powerful method for the measurement of hydrogen concentration in metallic materials. However, hydrogen loss from metallic samples during the preparation of the measurement poses a challenge to the accuracy of the results, especially in materials with high diffusivity of hydrogen, like ferritic and ferritic-martensitic steels. In the present paper, the effect of specimen cooling during the experimental procedure, as a tentative to reduce the loss of hydrogen during air-lock vacuum pumping for one high-strength steel of 1400 MPa, is evaluated. The results show, at room temperature, the presence of a continuous outward hydrogen flux accompanied with the redistribution of hydrogen within the measured steel during its exposure to the air-lock vacuum chamber under continuous pumping. Cooling of the steel samples to 213 K during pumping in the air-lock vacuum chamber before TDS measurement results in an increase in the measured total hydrogen concentration at about 14%. A significant reduction in hydrogen loss and redistribution within the steel sample improves the accuracy of hydrogen concentration measurement and trapping analysis in ferritic and martensitic steels.


2018 ◽  
Vol 18 (3) ◽  
pp. 369-371 ◽  
Author(s):  
Mária Blatnická ◽  
Michal Šajgalík ◽  
Milan Sága ◽  
Miroslav Blatnický

Sign in / Sign up

Export Citation Format

Share Document