redistribution of hydrogen
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 479
Author(s):  
Fuqiang Yang ◽  
Tao Yan ◽  
Wenjuan Zhang ◽  
Haibing Zhang ◽  
Lingyan Zhao

Hydrogen embrittlement, as one of the major concerns for austenitic stainless steel, is closely linked to the diffusion of hydrogen through the grain boundary of materials. The phenomenon is still not well understood yet, especially the full interaction between hydrogen diffusion and the misorientation of the grains. This work aimed at the development of a robust numerical strategy to model the full coupling of the hydrogen diffusion and the anisotropic behavior of crystals in 316 stainless steel. A constitutive model, which allows easy incorporation of crystal orientation, various loading conditions, and arbitrary model geometries, was established by using the finite element package ABAQUS. The study focuses on three different bicrystal models composed of misoriented crystals, and the results indicate that the redistribution of hydrogen is significant closely to the grain boundary, and the redistribution is driven by the hydrostatic pressure caused by the misorientation of two neighboring grains. A higher elastic modulus ratio along the tensile direction will lead to a higher hydrogen concentration difference in the two grains equidistant from the grain boundary. The hydrogen concentration shows a high value in the crystal along the direction with stiff elastic modulus. Moreover, there exists a large hydrogen concentration gradient in a narrow region very close to the grain boundary to balance the concentration difference of the neighboring grains.


2021 ◽  
Vol 43 (2) ◽  
pp. 133-142
Author(s):  
О.V. Zinchenko ◽  
◽  
V.D. Ezhova ◽  
A.L. Tolstov ◽  
◽  
...  

A solvothermal synthetic pathway and functional polymer styabilizers was used for synthesis of fine silver structures of different architecture. Using polyvinylpyrrolidone as a stabilizer silver micronized wires with a diameter of 3,8–4,2 μm and aspect ratio of up to 30 were prepared. XRD technique was applied for qualitative determination of silver metal structures. New thermoresponse composite hydrogels with a structure of semi-IPNs were prepared from cross-linked polyvinyl alcohol, linear highly hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) and as-synthesized silver micro-sized wires. Effect of a structure and a composition of the polymer matrix, and inorganic anisotropic filler on structure arrangement of composite hydrogels were evaluated by DMA studies. A presence of linear hydrophilic PEtOx and anisotropic metal filler in PVA matrix reduces storage modulus Е’ from 275 to 222–230 MPa and increases loss modulus Е” up to 45,5 MPa at room temperature measurements that partially initiated by poor structuration ability of the composites under high solvation level of polymer matrices. Increasing temperature leads to redistribution of hydrogen bonds network and hybridization of PVA nad PEtOx macrochains and enhances energy dissipation ability of unfilled hydrogel. A filler due to conjugation with amine-functionalized PEtOx chains and its localization closed to a surface of metal supresses polymer-polymer interactions and elasticity parameters of composite matrix drops down. As a result, diffusion and permeability coefficients of composite hydrogels reaches 1,06–1,52·10–9 cm2/s and 0,83–1,09·10-9 g/(cm·s), respectively, that higher in comparison with cross-linked PVA matrices. A presence of hydrogen bonds of different energy in hydrogels provides an appearance of multiple relaxation transitions due to different macrochain mobility in a bulk of polymer matrix. Differences of temperature interval of LCTS for hydrogels were found from analysis Е”(T)/dT (62–70 °С) and Δχ(T)/dT (67–70 °С) dependencies are interrelated with kinetic pecularities of diffusion processes that are able to suppress a phase separation at the temperatures closed to LCTS. Phase inversion processes for hydrogel containing 5 % of PEtOx at LCTS are accompanied by desorption of 32–73 % of sorbate. Moreover, thermoresponsive properties of the hydrogels filled with metallic silver wires are higher than that of the unfilled semi-IPNs.


2020 ◽  
Author(s):  
Suji George

AbstractThe affinity maturation of Sars-Cov-1 VHH-72 nanobody from its germline predecessor has been studied at the molecular level. The effect of somatic mutations accumulated during affinity maturation process on flexibility, stability and affinity of the germline and affinity matured nanobody was studied. Affinity maturation results in loss of local flexibility in CDR of H3 and this resulted in a gain of affinity towards the antigen. Further affinity maturation was found to destabilize the nanobody. Mechanistically the loss of flexibility of the CDR H3 is due to the redistribution of hydrogen bond network due to somatic mutation A50T, also this contributes significantly to the destability of the nanobody. Unlike antibody, in nanobody the framework region is highly conserved and structural diversity in CDR is the determining factor in diverse antigen binding and also a factor contributing to the stability. This study provide insights into the interrelationship between flexibility, stability and affinity during affinity maturation in a nanobody.


2020 ◽  
Vol 32 (3) ◽  
pp. 305-310
Author(s):  
Wendi Liu ◽  
Yan Yang ◽  
Qunke Xia

Abstract. It has long been known that hydrogen impurities can be incorporated in the structure of nominally anhydrous minerals (NAMs) and substantially influence their physical properties. One of the geologically most prominent NAMs is feldspar. The hydrogen concentration in NAMs is usually expressed in parts per million of water by weight (ppm H2O wt.) In this paper, we use the term “hydrogen” for uniformity, except when we use “water” for describing its amount expressed as parts per million of H2O by weight. In our article (Liu et al., 2018), we carried out in situ high-temperature X-ray powder diffraction and Raman spectroscopic studies on three natural anorthoclase samples with similar Or (K-feldspar) contents (Ab67Or31An2, Ab66Or31An2, and Ab65Or33An3) and Al–Si disordering but contrasting water contents. The spectroscopic results suggested that the displacive phase transition temperature is higher for the nearly anhydrous anorthoclase sample than the anorthoclase samples with about 200 ppm water, and we thus concluded that hydrogen is another factor impacting the displacive phase transition temperature. We thank Kroll and Schmid-Beurmann for pointing out the weakness in our interpretation that hydrogen is a possible important factor (Kroll and Schmid-Beurmann, 2020). To clarify this issue, we conducted transmission electron microscopy (TEM) experiments on the three samples to check texture effects. The TEM studies indicated that the nearly anhydrous anorthoclase sample consists of two feldspar phases, a K-poor and a K-rich one, and that the K-poor area may be responsible for the higher displacive phase transition temperature. According to the observation that the temperature of redistribution of hydrogen is accordant with the displacive phase transition temperature, the effect of hydrogen could not be ruled out. Based on these results, it can be concluded that hydrogen may not be the sole possible factor, and it was a proposition more than a definitive proof for the moment. Natural feldspars are complex, and factors affecting displacive phase transitions are multiple (e.g., Salje et al., 1991; Harrison and Salje, 1994; Hayward and Salje, 1996; Dobrovolsky et al., 2017). Therefore, to further investigate hydrogen effects on displacive phase transition in feldspar, synthetic samples with pure chemical compositions and hydrogen species are necessary. In the following, we address each issue in the same order as in the comment by Kroll and Schmidt-Beurmann (2020).


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1252 ◽  
Author(s):  
Eric Fangnon ◽  
Evgenii Malitckii ◽  
Yuriy Yagodzinskyy ◽  
Pedro Vilaça

Thermal desorption spectroscopy (TDS) is a powerful method for the measurement of hydrogen concentration in metallic materials. However, hydrogen loss from metallic samples during the preparation of the measurement poses a challenge to the accuracy of the results, especially in materials with high diffusivity of hydrogen, like ferritic and ferritic-martensitic steels. In the present paper, the effect of specimen cooling during the experimental procedure, as a tentative to reduce the loss of hydrogen during air-lock vacuum pumping for one high-strength steel of 1400 MPa, is evaluated. The results show, at room temperature, the presence of a continuous outward hydrogen flux accompanied with the redistribution of hydrogen within the measured steel during its exposure to the air-lock vacuum chamber under continuous pumping. Cooling of the steel samples to 213 K during pumping in the air-lock vacuum chamber before TDS measurement results in an increase in the measured total hydrogen concentration at about 14%. A significant reduction in hydrogen loss and redistribution within the steel sample improves the accuracy of hydrogen concentration measurement and trapping analysis in ferritic and martensitic steels.


Author(s):  
Anatolii Baturin ◽  
Alexander Lotkov ◽  
Victor Grishkov ◽  
Ivan Rodionov ◽  
Dorzhima Zhapova

The paper presents the results of a study the hydrogen effect on the structural-phase transformations and the superelasticity in binary ultrafine-grained (UFG) TiNi based alloy after diffusion redistribution hydrogen as a result of aging at room temperature. The redistribution of hydrogen in the process of long-term aging after electrolytic hydrogenation of UFG wire specimens the Ti49,1Ni50,9(at.%) stabilizes the B2 structure. Superelasticity in samples aged at room temperature after hydrogenation is significantly deteriorated.


2018 ◽  
Vol 923 ◽  
pp. 51-55 ◽  
Author(s):  
Irina Vasilevna Stepina

Сhemical interaction of cellulose with reactive groups of four-coordinate boron-nitrogen compounds is an intercrystalline process proceeding without destruction of cellulose crystalline structure; probably, the modifier molecules react with easier accessible hydroxyl groups of the amorphous cellulose regions. The formation of B-O-C ether bonds between OH groups of modifiers and more reactive hydroxyl groups of amorphous parts of cellulose results in redistribution of hydrogen bonds and, as a consequence, to rectification of cellulose macromolecules. Thus, when cellulose is treated with compositions based on four-coordinate boron-nitrogen compounds, crystalline structure of cellulose is not disrupted, hence this process can be called a "mild" modification. Such modification does not lead to accelerated aging of cellulose materials, rapid loss of strength and increases durability of wooden structures.


Sign in / Sign up

Export Citation Format

Share Document