scholarly journals Reindeer Population as an Indicator of Sustainable Development of the Arctic Territory

2021 ◽  
Vol 9 (4) ◽  
pp. 21-28
Author(s):  
Natalia V. Karmanovskaya

The objectives of this study are to carry out genetic monitoring of domestic reindeer of Nenets breed raised on the territory of Taimyr; establishment of the genetic bank of domestic reindeer of Nenets breed; as well as a comparative analysis with populations of the Nenets breed from other breeding regions (Nenets and Yamalo-Nenets Autonomous Okrug, Murmansk Oblast and the Komi Republic) using DNA markers. The microsatellites were used in the studies as DNA markers of genetic diversity. Genotyping was carried out by the methods of the Laboratory of molecular selection basis of L.K. Ernst Federal Research Center for Animal Husbandry. Statistical data processing was performed using the GenAlEx 6.5, SplitsTree 4.14.5 software, as well as the software packages “diveRsity”, “pophelper”, and “adegenet” for the R computing environment. As a result of the study, it was found that the population of reindeer of Taimyr breed in the village of Tukhard is characterised by the minimum level of polymorphism and genetic diversity, as indicated by the minimum values of all population genetic indicators. The authors assume that the patterns that have been identified are primarily the result of breeding programmes on the samples presented in this study (such studies have not been conducted before). The results of the PCA analysis and the phylogenetic dendrogram of genetic relationships, built on the basis of the matrix of Jost's D pairwise genetic distances using the NeighborNet, revealed a similar genetic structure of Taimyr populations, which, most likely, could be due to the close geographical localisation of the studied individuals. The authors come to the conclusion that a low level of both allelic and genetic diversity in the future may negatively affect the adaptation of animals to environmental conditions.

2018 ◽  
Vol 10 (4) ◽  
pp. 554-558
Author(s):  
Emre SEVİNDİK ◽  
Hüseyin UYSAL ◽  
Zehra Tuğba MURATHAN

Within the present study, it was conducted a genetic diversity analysis using ISSR markers for some apple genotypes grown in Ardahan region, Turkey. Total genomic DNA (gDNA) isolation from apple leaves was performed using commercial kits. Five ISSR primers were used to determine the genetic diversity among the genotypes studied. Polymerase Chain Reaction (PCR) was performed with all gDNA samples to produce bands to score. PCR products were run in agarose gel and visualized under UV light. Bands on the gels were scored as “1”, while no bands at the corresponding positions were scored as “0”, to generate the matrix file. Five ISSR primers produced a total of 35 bands, and 20 of them were polymorphic. The polymorphic bands rated approximately 57%. Phylogenetic relationships and genetic distances between the genotypes were calculated by using the PAUP [Phylogenetic Analysis Using Parsimony (and Other Methods)] program.  According to the PAUP data, the closest genetic distance was 0.03704 between ‘Kaburga’ and ‘Japon Apple’ genotypes, while the furthest genetic distance was 0.48148 between ‘Karanfil Apple’ and ‘Sisli Uruset’. The phylogenetic analysis obtained using UPGMA algorithm produced a phylogenetic tree with two clades. The results suggest that ISSR markers are useful tools for determining genetic relationships among apple genotypes.


2011 ◽  
Vol 46 (9) ◽  
pp. 1035-1044 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Sérgio Yoshimitsu Motoike

The objective of this work was to analyze the genetic diversity of 47 table grape accessions, from the grapevine germplasm bank of Embrapa Semiárido, using 20 RAPD and seven microsatellite markers. Genetic distances between pairs of accessions were obtained based on Jaccard's similarity index for RAPD data and on the arithmetic complement of the weighted index for microsatellite data. The groups were formed according to the Tocher's cluster analysis and to the unweighted pair‑group method with arithmetic mean (UPGMA). The microsatellite markers were more efficient than the RAPD ones in the identification of genetic relationships. Information on the genetic distance, based on molecular characteristics and coupled with the cultivar agronomic performance, allowed for the recommendation of parents for crossings, in order to obtain superior hybrids in segregating populations for the table grape breeding program of Embrapa Semiárido.


2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2018 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Jayusman Jayusman ◽  
Muhammad Na’iem ◽  
Sapto Indrioko ◽  
Eko Bhakti Hardiyanto ◽  
ILG Nurcahyaningsih

Surian Toona sinensis Roem is one of the most widely planted species in Indonesia. This study aimed to estimate the genetic diversity between a number of surian populations in a progeny test using RAPD markers, with the goal of proposing management strategies for a surian breeding program. Ninety-six individual trees from 8 populations of surian were chosen as samples for analysis. Eleven polymorphic primers (OP-B3, OP-B4, OP-B10, OP-H3, OP-Y6, OP-Y7, OP-Y8, OP-Y10, OP-Y11, OP-Y14, and OP-06) producing reproducible bands were analyzed for the 96 trees, with six trees per family sampled. Data were analyzed using GenAlEx 6.3, NTSYS 2.02. The observed percentage of polymorphic loci ranged from 18.2% to 50%. The mean level of genetic diversity among the surian populations was considered to be moderate (He 0.304). Cluster analysis grouped the genotypes into two main clusters, at similarity levels of 0.68 and 0.46. The first two axes of the PCoA explained 46.16% and 25.54% of the total variation, respectively. The grouping of samples into clusters and subclusters did not correspond with family and their distances, but the grouping was in line with the genetic distances of the samples.


2020 ◽  
Vol 24 (7) ◽  
pp. 747-754
Author(s):  
V. R. Kharzinova ◽  
N. A. Zinovieva

One of the main tasks of genetics and animal breeding is the assessment of genetic diversity and the study of genetic relationships between different breeds and populations using molecular genetic analysis methods. We analysed the polymorphism of microsatellites and the information on the state of genetic diversity and the population structure of local breeds in Russia: the Kemerovo, the Berkshire, the Liven, the Mangalitsa, and the Civilian; in the Republic of Belarus: the Large White and the Black-and-White; and in Ukraine: the White Steppe, as well as commercial breeds of imported origin of domestic reproduction: the Large White, the Landrace, and the Duroc. The materials used for this study were the tissue and DNA samples extracted from 1,194 pigs and DNA of the UNU “Genetic material bank of domestic and wild animal species and birds” of the L.K. Ernst Federal Research Center for Animal Husbandry. Polymorphisms of 10 microsatellites (S0155, S0355, S0386, SW24, SO005, SW72, SW951, S0101, SW240, and SW857) were determined according to the previously developed technique using DNA analyser ABI3130xl. To estimate the allele pool of each population, the average number of alleles (NA), the effective number of alleles (NE ) based on the locus, the rarified allelic richness (AR), the observed (HO ) and expected (HE ) heterozygosity, and the fixation index (FIS) were calculated. The degree of genetic differentiation of the breeds was assessed based on the pairwise values of FST and D. The analysis of the allelic and genetic diversity parameters of the local breeds showed that the maximum and minimum levels of polymorphism were observed in pigs of the Ukrainian White Steppe breed (NA = 6.500, NE = 3.709, and AR = 6.020) and in pigs of the Duroc breed (NA = 4.875, NE = 2.119, and AR = 3.821), respectively. The highest level of genetic diversity was found in the Large White breed of the Republic of Belarus (HO = 0.707 and NE = 0.702). The minimum level of genetic diversity was found in pigs of the imported breeds – the Landrace (HO = 0.459, HE = 0.400) and the Duroc (HO = 0.480, HE = 0.469) – indicating a high selection pressure in these breeds. Based on the results of phylogenetic analysis, the genetic origin of Large White pigs, the breeds, from which the Berkshire pigs originated, and the genetic detachment of the Landrace from the Mangalitsa breeds were revealed. The cluster analysis showed a genetic consolidation of the Black-and-White, the Berkshire, and the Mangalitsa pigs. Additionally, the imported breeds with clustering depending on the origin were characterised by a genetic structure different from that of the other breeds. The information obtained from these studies can serve as a guide for the management and breeding strategies of the pig breeds studied, to allow their better use and conservation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Qian You ◽  
Liping Xu ◽  
Yifeng Zheng ◽  
Youxiong Que

Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use.


2013 ◽  
Vol 61 (5) ◽  
pp. 357 ◽  
Author(s):  
Anas M. Khanshour ◽  
Rytis Juras ◽  
E. Gus Cothran

The Waler horse breed is an integral part of Australian history. The purposes of this study were to analyse the genetic variability in Waler horses from Australia and to investigate genetic relationships with other horse breeds. We examined the genetic diversity of 70 Waler horses sampled from seven breeding stations in Australia. Also we analysed the relationships of these horses with 11 other horse breeds. Analysis of the genetic structure was carried out using 15 microsatellite loci, genetic distances, AMOVA, factorial correspondence analysis and a Bayesian method. We found that the genetic diversity in the Waler was greater than the domestic horse mean and exceeded that of all endangered horse breeds. Our findings also revealed moderate population subdivision rather than inbreeding. All genetic similarity measures indicated that the Thoroughbred might be a key ancestor to the Waler. This study indicates that there is no immediate concern for loss of variation in Waler horses. Also, there clearly has been a strong input from the Thoroughbred into the Waler horse breed. However, the genetic evidence suggests that this input was not just direct but also came through other types of horses with a Thoroughbred cross background.


2011 ◽  
Vol 149 (5) ◽  
pp. 617-624 ◽  
Author(s):  
P. SOENGAS ◽  
M. E. CARTEA ◽  
M. FRANCISCO ◽  
M. LEMA ◽  
P. VELASCO

SUMMARYBrassica rapa subsp. rapa L. includes three different crops: turnips (roots), turnip greens (leaves) and turnip tops (inflorescences). A collection of B. rapa subsp. rapa from north-western Spain is currently kept at ‘Misión Biológica de Galicia’ (a research centre of the Consejo Superior de Investigaciones Científicas (CSIC), Spain). This collection has been characterized based on morphological and agronomical traits. A better understanding of the genetic diversity present in the collection is necessary in order to optimize its use and maintenance. The objectives of the present work were to assess the genetic diversity present in the B. rapa subsp. rapa collection, to establish genetic relationships among populations and to study the genetic structure of the collection. Eighty populations were analysed based on 18 simple sequence repeats (SSRs). Populations showed a broad range of genetic diversity, thus offering good potential for further genetic improvement. Most of the variability was found within the population level, probably due to high rates of allogamy, to migration and/or interchange of seed among local growers. Populations showed a low level of differentiation, grouping in just one cluster, and therefore they can be considered as samples of a highly variable metapopulation that can be used for B. rapa breeding programmes.


Sign in / Sign up

Export Citation Format

Share Document