Spinal Cord Injuries the Facts of Neuropathology: Opportunities and Limitations

Author(s):  
Byron A Kakulas

It is essential for research projects which are undertaken to find a “cure” for human spinal cord injury (SCI) to be consistent with the neuropathological facts of the disorder. In this respect there are three main points to be taken into account. Firstly, the researcher should be aware that simple transection of the spinal cord is not a feature of human SCI. The usual lesion is one of compression and disruption with haemorrhage. The second and most important aspect of human SCI is to understand that Wallerian degeneration inevitably ensues following disruption of the axon. Wallerian degeneration is progressive and inexorable and unlike the peripheral nervous system CNS axons do not regenerate. The third and more helpful fact is that in the majority (71%) of SCI autopsies a small amount of white matter, myelin and axons, was found to be preserved at the level of injury. Re-activation of these dormant, axons offers the opportunity for improvement of the SCI patient’s neurological status by means of restorative neurology (RN).

1988 ◽  
Vol 69 (3) ◽  
pp. 399-402 ◽  
Author(s):  
Joseph M. Piepmeier ◽  
N. Ross Jenkins

✓ Sixty-nine patients with traumatic spinal cord injuries were evaluated for changes in their functional neurological status at discharge from the hospital, and at 1 year, 3 years, and 5+ years following injury. The neurological examinations were used to classify patients' spinal cord injury according to the Frankel scale. This analysis revealed that the majority of improvement in neurological function occurred within the 1st year following injury; however, changes in the patients' status continued for many years. Follow-up examinations at an average of 3 years postinjury revealed that 23.3% of the patients continued to improve, whereas 7.1% had deteriorated compared to their status at 1 year. An examination at an average of 5+ years demonstrated further improvement in 12.5%, with 5.0% showing deterioration compared to the examinations at 3 years. These results demonstrate that, in patients with spinal trauma, significant changes in neurological function continue for many years.


2016 ◽  
Vol 4 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Sergei V Vissarionov ◽  
Alexei G Baindurashvili ◽  
Irina A Kryukova

Standardization of neurological examination and diagnosis in the case of spinal injury is currently an important challenge in neurotraumatology. At present, most organizations, worldwide, that are involved with spinal injuries, apply the International Standards for Neurological Classifications of Spinal Cord Injury (ISNCSCI), drafted by American Spinal Injury Association (ASIA) and approved in 1992. The ASIA/ISNCSCI scale is a quantitative system for estimation of the neurological status of spinal cord injury patients. The ASIA/ISNCSCI scale has been repeatedly updated and revised since 1992. The 2015 version of the ISNCSCI on the American Spinal Injury Association website is demonstrated in this study, and the form and testing instruction are translated into Russian.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Blume ◽  
M. F. Geiger ◽  
M. Müller ◽  
H. Clusmann ◽  
V. Mainz ◽  
...  

AbstractEndogenous immune mediated reactions of inflammation and angiogenesis are components of the spinal cord injury in patients with degenerative cervical myelopathy (DCM). The aim of this study was to identify alteration of certain mediators participating in angiogenetic and inflammatory reactions in patients with DCM. A consecutive series of 42 patients with DCM and indication for surgical decompression were enrolled for the study. 28 DCM patients were included, as CSF samples were taken preoperatively. We enrolled 42 patients requiring surgery for a thoracic abdominal aortic aneurysm (TAAA) as neurologically healthy controls. In 38 TAAA patients, CSF samples were taken prior to surgery and thus included. We evaluated the neurological status of patients and controls prior to surgery including NDI and mJOA. Protein-concentrations of factors with a crucial role in inflammation and angiogenesis were measured in CSF via ELISA testing (pg/ml): Angiopoietin 2, VEGF-A and C, RANTES, IL 1 beta and IL 8. Additionally, evaluated the status of the blood-spinal cord barrier (BSCB) by Reibers´diagnostic in all participants. Groups evidently differed in their neurological status (mJOA: DCM 10.1 ± 3.3, TAAA 17.3 ± 1.2, p < .001; NDI: DCM 47.4 ± 19.7, TAAA 5.3 ± 8.6, p < .001). There were no particular differences in age and gender distribution. However, we detected statistically significant differences in concentrations of mediators between the groups: Angiopoietin 2 (DCM 267.1.4 ± 81.9, TAAA 408.6 ± 177.1, p < .001) and VEGF C (DCM 152.2 ± 96.1, TAAA 222.4 ± 140.3, p = .04). DCM patients presented a mild to moderate BSCB disruption, controls had no signs of impairment. In patients with DCM, we measured decreased concentrations of angiogenic mediators. These results correspond to findings of immune mediated secondary harm in acute spinal cord injury. Reduced angiogenic activity could be a relevant part of the pathogenesis of DCM and secondary harm to the spinal cord.


2021 ◽  
pp. 1357034X2110256
Author(s):  
Denisa Butnaru

Motility impairments resulting from spinal cord injuries and cerebrovascular accidents are increasingly prevalent in society, leading to the growing development of rehabilitative robotic technologies, among them exoskeletons. This article outlines how bodies with neurological conditions such as spinal cord injury and stroke engage in processes of re-appropriation while using exoskeletons and some of the challenges they face. The main task of exoskeletons in rehabilitative environments is either to rehabilitate or ameliorate anatomic functions of impaired bodies. In these complex processes, they also play a crucial role in recasting specific corporeal phenomenologies. For the accomplishment of these forms of corporeal re-appropriation, the role of experts is crucial. This article explores how categories such as bodily resistance, techno-inter-corporeal co-production of bodies and machines, as well as body work mark the landscape of these contemporary forms of impaired corporeality. While defending corporeal extension rather than incorporation, I argue against the figure of the ‘cyborg’ and posit the idea of ‘residual subjectivity’.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Emma K. A. Schmidt ◽  
Pamela J. F. Raposo ◽  
Abel Torres-Espin ◽  
Keith K. Fenrich ◽  
Karim Fouad

Abstract Background Minocycline is a clinically available synthetic tetracycline derivative with anti-inflammatory and antibiotic properties. The majority of studies show that minocycline can reduce tissue damage and improve functional recovery following central nervous system injuries, mainly attributed to the drug’s direct anti-inflammatory, anti-oxidative, and neuroprotective properties. Surprisingly the consequences of minocycline’s antibiotic (i.e., antibacterial) effects on the gut microbiota and systemic immune response after spinal cord injury have largely been ignored despite their links to changes in mental health and immune suppression. Methods Here, we sought to determine minocycline’s effect on spinal cord injury-induced changes in the microbiota-immune axis using a cervical contusion injury in female Lewis rats. We investigated a group that received minocycline following spinal cord injury (immediately after injury for 7 days), an untreated spinal cord injury group, an untreated uninjured group, and an uninjured group that received minocycline. Plasma levels of cytokines/chemokines and fecal microbiota composition (using 16s rRNA sequencing) were monitored for 4 weeks following spinal cord injury as measures of the microbiota-immune axis. Additionally, motor recovery and anxiety-like behavior were assessed throughout the study, and microglial activation was analyzed immediately rostral to, caudal to, and at the lesion epicenter. Results We found that minocycline had a profound acute effect on the microbiota diversity and composition, which was paralleled by the subsequent normalization of spinal cord injury-induced suppression of cytokines/chemokines. Importantly, gut dysbiosis following spinal cord injury has been linked to the development of anxiety-like behavior, which was also decreased by minocycline. Furthermore, although minocycline attenuated spinal cord injury-induced microglial activation, it did not affect the lesion size or promote measurable motor recovery. Conclusion We show that minocycline’s microbiota effects precede its long-term effects on systemic cytokines and chemokines following spinal cord injury. These results provide an exciting new target of minocycline as a therapeutic for central nervous system diseases and injuries.


2015 ◽  
Vol 26 (5) ◽  
pp. 2167-2177 ◽  
Author(s):  
John Cirillo ◽  
Finnegan J. Calabro ◽  
Monica A. Perez

Sign in / Sign up

Export Citation Format

Share Document