scholarly journals Point-of-Need Disposable ELISA System for COVID-19 Serology Testing

Author(s):  
Cody Carrell ◽  
Jeremy Link ◽  
Ilhoon Jang ◽  
James Terry ◽  
Michael Scherman ◽  
...  

A disposable enzyme-linked immunosorbent assay (dELISA) device for ate-home or doctor’s office use was developed to detect SARS-CoV-2 antibodies. Serology testing for SARS-CoV-2 antibodies is currently run using well-plate ELISAs in centralized laboratories. However, the scale of serology testing needed for epidemiological and clinical screening studies will overwhelm existing clinical laboratory resources. Instead, a point-of-need device that can be used at home or in doctor’s offices for COVID-19 serology testing must be developed and is one of four target products prioritized by the World Health Organization. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a disposable ELISA device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA. The device utilizes capillary-driven flow channels made of transparency films and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label is used to produce a colorimetric signal instead of a nanoparticle label in order to amplify signal and increase sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device can detect antibodies at 2.8 ng/mL from whole blood, which was very close the concentration of detectable target in a well-plate ELISA (1.2 ng/mL). In this study the dELISA system was used to detect SARS-CoV-2 antibodies, but we believe that the device represents a fundamental step forward in point-of-care technology that will enable sensitive detection of many other analytes outside of a centralized laboratory.

2020 ◽  
Author(s):  
Cody Carrell ◽  
Jeremy Link ◽  
Ilhoon Jang ◽  
James Terry ◽  
Michael Scherman ◽  
...  

A disposable enzyme-linked immunosorbent assay (dELISA) device for ate-home or doctor’s office use was developed to detect SARS-CoV-2 antibodies. Serology testing for SARS-CoV-2 antibodies is currently run using well-plate ELISAs in centralized laboratories. However, the scale of serology testing needed for epidemiological and clinical screening studies will overwhelm existing clinical laboratory resources. Instead, a point-of-need device that can be used at home or in doctor’s offices for COVID-19 serology testing must be developed and is one of four target products prioritized by the World Health Organization. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a disposable ELISA device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA. The device utilizes capillary-driven flow channels made of transparency films and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label is used to produce a colorimetric signal instead of a nanoparticle label in order to amplify signal and increase sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device can detect antibodies at 2.8 ng/mL from whole blood, which was very close the concentration of detectable target in a well-plate ELISA (1.2 ng/mL). In this study the dELISA system was used to detect SARS-CoV-2 antibodies, but we believe that the device represents a fundamental step forward in point-of-care technology that will enable sensitive detection of many other analytes outside of a centralized laboratory.


2020 ◽  
Author(s):  
Cody Carrell ◽  
Jeremy Link ◽  
Ilhoon Jang ◽  
James Terry ◽  
Michael Scherman ◽  
...  

A disposable enzyme-linked immunosorbent assay (dELISA) device for ate-home or doctor’s office use was developed to detect SARS-CoV-2 antibodies. Serology testing for SARS-CoV-2 antibodies is currently run using well-plate ELISAs in centralized laboratories. However, the scale of serology testing needed for epidemiological and clinical screening studies will overwhelm existing clinical laboratory resources. Instead, a point-of-need device that can be used at home or in doctor’s offices for COVID-19 serology testing must be developed and is one of four target products prioritized by the World Health Organization. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a disposable ELISA device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA. The device utilizes capillary-driven flow channels made of transparency films and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label is used to produce a colorimetric signal instead of a nanoparticle label in order to amplify signal and increase sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device can detect antibodies at 2.8 ng/mL from whole blood, which was very close the concentration of detectable target in a well-plate ELISA (1.2 ng/mL). In this study the dELISA system was used to detect SARS-CoV-2 antibodies, but we believe that the device represents a fundamental step forward in point-of-care technology that will enable sensitive detection of many other analytes outside of a centralized laboratory.


2020 ◽  
Author(s):  
Cody Carrell ◽  
Jeremy Link ◽  
Ilhoon Jang ◽  
James Terry ◽  
Michael Scherman ◽  
...  

A disposable enzyme-linked immunosorbent assay (dELISA) device for ate-home or doctor’s office use was developed to detect SARS-CoV-2 antibodies. Serology testing for SARS-CoV-2 antibodies is currently run using well-plate ELISAs in centralized laboratories. However, the scale of serology testing needed for epidemiological and clinical screening studies will overwhelm existing clinical laboratory resources. Instead, a point-of-need device that can be used at home or in doctor’s offices for COVID-19 serology testing must be developed and is one of four target products prioritized by the World Health Organization. Lateral flow assays are common and easy to use, but lack the sensitivity needed to reliably detect SARS-CoV-2 antibodies in clinical samples. This work describes a disposable ELISA device that is as simple to use as a lateral flow assay, but as sensitive as a well-plate ELISA. The device utilizes capillary-driven flow channels made of transparency films and double-sided adhesive combined with paper pumps to drive flow. The geometry of the channels and storage pads enables automated sequential washing and reagent addition steps with two simple end-user steps. An enzyme label is used to produce a colorimetric signal instead of a nanoparticle label in order to amplify signal and increase sensitivity, while the integrated washing steps decrease false positives and increase reproducibility. Naked-eye detection can be used for qualitative results or a smartphone camera for quantitative analysis. The device can detect antibodies at 2.8 ng/mL from whole blood, which was very close the concentration of detectable target in a well-plate ELISA (1.2 ng/mL). In this study the dELISA system was used to detect SARS-CoV-2 antibodies, but we believe that the device represents a fundamental step forward in point-of-care technology that will enable sensitive detection of many other analytes outside of a centralized laboratory.


2020 ◽  
Vol 5 (03) ◽  
pp. 282-284
Author(s):  
Deepinder K. Chhina ◽  
Jyoti Chaudhary

AbstractIn December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was declared in Wuhan, city of China. Later on, the World Health Organization declared COVID-19 as a pandemic on March 11, 2020. The clinical course of the disease ranges from asymptomatic cases to fatal severe respiratory illness. Various laboratory tests are available for the diagnosis of disease. The gold standard test is real-time PCR (polymerase chain reaction), whereas antigen testing can be used as a point-of-care test. Antibody detection by ELISA (enzyme-linked immunosorbent assay) can be used for the surveillance of the immune response.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257615
Author(s):  
Yosita Panraksa ◽  
Anita G. Amin ◽  
Barbara Graham ◽  
Charles S. Henry ◽  
Delphi Chatterjee

The World Health Organization (WHO) calls for the development of a rapid, biomarker-based, non-sputum test capable of detecting all forms of tuberculosis (TB) at the point-of-care to enable immediate treatment initiation. Lipoarabinomannan (LAM) is the only WHO-endorsed TB biomarker that can be detected in urine, an easily collected sample matrix. For obtaining optimal sensitivity, we and others have shown that some form of sample pretreatment is necessary to remove background from patient urine samples. A number of systems are paper-based often destined for resource limited settings. Our current work presents incorporation of one such sample pretreatment, proteinase K (ProK) immobilized on paper (IPK) and test its performance in comparison to standard proteinase K (SPK) treatment that involves addition and deactivation at high temperature prior to performing a capture ELISA. Herein, a simple and economical method was developed for using ProK immobilized strips to pretreat urine samples. Simplification and cost reduction of the proposed pretreatment strip were achieved by using Whatman no.1 paper and by minimizing the concentration of ProK (an expensive but necessary reagent) used to pretreat the clinical samples prior to ELISA. To test the applicability of IPK, capture ELISA was carried out on either LAM-spiked urine or the clinical samples after pretreatment with ProK at 400 μg/mL for 30 minutes at room temperature. The optimal conditions and stability of the IPK were tested and validation was performed on a set of 25 previously analyzed archived clinical urine samples with known TB and HIV status. The results of IPK and SPK treated samples were in agreement showing that the urine LAM test currently under development has the potential to reach adult and pediatric patients regardless of HIV status or site of infection, and to facilitate global TB control to improve assay performance and ultimately treatment outcomes.


2020 ◽  
Author(s):  
Hossam Haick ◽  
Rotem Vishinkin ◽  
Rami Busool ◽  
Elias Mansour ◽  
Falk Fish ◽  
...  

Abstract Tuberculosis (TB) is an infectious disease that threatens >10 million people annually. Despite advances in TB diagnostics, millions of patients continue to receive insufficient diagnosis, as TB symptoms are not specific. Many existing bio-diagnostic tests are slow, have low sensitivity and/or specificity, and can be too expensive or complex for resource-limited settings. Early diagnosis of TB contributes to morbidity mitigation and prevents the disease spread. Here, we report on a new physiological pathway for TB diagnostics via TB-specific profile of volatile organic compounds (VOCs) that are detected and quantified from air trapped above the skin (“skin headspace”). Beyond the exploration aspect that relies on clinical samples from 636 individuals in two clinical sites, we demonstrate the utility of these VOC profiles in a point-of-care diagnosis, by means of specifically-designed intelligent nanoarray, both in lab setting and online, in-situ wearable devices. The results show excellent discrimination between active pulmonary TB patients and controls with 89.4% accuracy. This fulfills the triage TB test requirements according to the World Health Organization (WHO).


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258819
Author(s):  
Benjamin D. Grant ◽  
Caitlin E. Anderson ◽  
Luis F. Alonzo ◽  
Spencer H. Garing ◽  
John R. Williford ◽  
...  

Inexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format. While various manufacturers have produced commercially available SARS-Cov2 antigen LFAs, access to validated tests remains difficult or cost prohibitive in low-and middle-income countries. Herein, we present a visually read open-access LFA (OA-LFA) using commercially-available antibodies and materials for the detection of SARS-CoV-2. The LFA yielded a Limit of Detection (LOD) of 4 TCID50/swab of gamma irradiated SARS-CoV-2 virus, meeting the acceptable analytical sensitivity outlined by in World Health Organization target product profile. The open-source architecture presented in this manuscript provides a template for manufacturers around the globe to rapidly design a SARS-CoV2 antigen test.


2020 ◽  
Author(s):  
Mohamed Z. Rashed ◽  
Jonathan A. Kopecheck ◽  
Mariah C. Priddy ◽  
Krystal T. Hamorsky ◽  
Kenneth E. Palmer ◽  
...  

Emerging novel human contagious viruses and pathogens put humans at risk of hospitalization and possibly death due to the unavailability of vaccines and drugs which may take years to develop. Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was classified as a pandemic by the World Health Organization and has caused over 550,000 deaths worldwide as of July 2020. Accurate and scalable point-of-care devices would increase screening, diagnosis, and monitoring of COVID-19 patients. Here, we demonstrate rapid label-free electrochemical detection of SARS-CoV-2 antibodies using a commercially available impedance sensing platform. A 16-well plate containing sensing electrodes was pre-coated with receptor binding domain (RBD) of SARS-CoV-2 spike protein, and subsequently tested with samples of anti-SARS-CoV-2 monoclonal antibody CR3022 (0.1 μg/ml, 1.0 μg/ml, 10 μg/ml). Subsequent blinded testing was performed on six serum specimens taken from COVID-19 and non-COVID-19 patients (1:100 dilution factor). The platform was able to differentiate spikes in impedance measurements from a negative control (1% milk solution) for all CR3022 samples. Further, successful differentiation and detection of all positive clinical samples from negative control was achieved. Measured impedance values were consistent when compared to standard ELISA test results showing a strong correlation between them (R2 = 0:9). Detection occurs in less than five minutes and the well-based platform provides a simplified and familiar testing interface that can be readily adaptable for use in clinical settings.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pojchanun Kanitthamniyom ◽  
Pei Yun Hon ◽  
Aiwu Zhou ◽  
Mohammad Yazid Abdad ◽  
Zhi Yun Leow ◽  
...  

AbstractCarbapenemase-producing Enterobacteriaceae (CPE) are a group of drug-resistant Gram-negative pathogens that are classified as a critical threat by the World Health Organization (WHO). Conventional methods of detecting antibiotic-resistant pathogens do not assess the resistance mechanism and are often time-consuming and laborious. We have developed a magnetic digital microfluidic (MDM) platform, known as MDM Carba, for the identification of CPE by measuring their ability to hydrolyze carbapenem antibiotics. MDM Carba offers the ability to rapidly test CPE and reduce the amount of reagents used compared with conventional phenotypic testing. On the MDM Carba platform, tests are performed in droplets that function as reaction chambers, and fluidic operations are accomplished by manipulating these droplets with magnetic force. The simple droplet-based magnetic fluidic operation allows easy system automation and simplified hands-on operation. Because of the unique “power-free” operation of MDM technology, the MDM Carba platform can also be operated manually, showing great potential for point-of-care testing in resource-limited settings. We tested 27 bacterial isolates on the MDM Carba platform, and the results showed sensitivity and specificity that were comparable to those of the widely used Carba NP test. MDM Carba may shorten the overall turnaround time for CPE identification, thereby enabling more timely clinical decisions for better clinical outcomes. MDM Carba is a technological platform that can be further developed to improve diagnostics for other types of antibiotic resistance with minor modifications.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 380
Author(s):  
Anissa Chouikha ◽  
Dorra Rezig ◽  
Nadia Driss ◽  
Ichrak Abdelkhalek ◽  
Ahlem Ben Yahia ◽  
...  

This report is an overview of enterovirus (EV) detection in Tunisian polio-suspected paralytic cases (acute flaccid paralysis (AFP) cases), healthy contacts and patients with primary immunodeficiencies (PID) during an 11-year period. A total of 2735 clinical samples were analyzed for EV isolation and type identification, according to the recommended protocols of the World Health Organization. Three poliovirus (PV) serotypes and 28 different nonpolio enteroviruses (NPEVs) were detected. The NPEV detection rate was 4.3%, 2.8% and 12.4% in AFP cases, healthy contacts and PID patients, respectively. The predominant species was EV-B, and the circulation of viruses from species EV-A was noted since 2011. All PVs detected were of Sabin origin. The PV detection rate was higher in PID patients compared to AFP cases and contacts (6.8%, 1.5% and 1.3% respectively). PV2 was not detected since 2015. Using nucleotide sequencing of the entire VP1 region, 61 strains were characterized as Sabin-like. Among them, six strains of types 1 and 3 PV were identified as pre-vaccine-derived polioviruses (VDPVs). Five type 2 PV, four strains belonging to type 1 PV and two strains belonging to type 3 PV, were classified as iVDPVs. The data presented provide a comprehensive picture of EVs circulating in Tunisia over an 11-year period, reveal changes in their epidemiology as compared to previous studies and highlight the need to set up a warning system to avoid unnoticed PVs.


Sign in / Sign up

Export Citation Format

Share Document