scholarly journals A Tri-Layered Hydrogel Scaffold for Vocal Fold Tissue Engineering

Author(s):  
R. Kevin Tindell ◽  
Michael J. McPhail ◽  
Cheryl Myers ◽  
Juergen Neubauer ◽  
Justin M. Hintze ◽  
...  

The lamina propria within the vocal fold (VF) is a complex multi-layered tissue that increases in stiffness from the superficial to deep layer, where this characteristic is crucial for VF sound production. Tissue engineered scaffolds designed for VF repair must mimic the biophysical nature of the native vocal fold and promote cell viability, cell spreading, and vibration with air flow. In this study, we present a unique tri-layered, partially-degradable hydrogel scaffold that mimics the multi-layered structure of the VF lamina propria. Using thiol-norbornene photochemistry, tri-layered hydrogel scaffolds were fabricated via layer-by-layer stacking with increasing polymer concentration from the top to middle to deep layer. Mechanical analysis confirmed hydrogel modulus increased with increasing polymer concentration. Partially-degradable hydrogels promoted high cell viability and cell spreading in 3D as assessed via live/dead and cytoskeleton staining, respectively. Importantly, partially-degradable hydrogels maintained some degree of the 3D polymer network following protease exposure, while still enabling encapsulated cells to remodel their local environment via protease secretion. Finally, the tri-layered hydrogel scaffold successfully vibrated and produced sound in proof-of-concept air flow studies. This work represents a critical first step towards the design of a multi-layered, hydrogel scaffold for vocal fold tissue engineering.

2018 ◽  
Author(s):  
S Dürr ◽  
A Schützenberger ◽  
M Döllinger ◽  
C Alexiou ◽  
M Pöttler

2009 ◽  
Vol 15 (3) ◽  
pp. 249-262 ◽  
Author(s):  
Jaishankar K. Kutty ◽  
Ken Webb

2014 ◽  
Vol 124 (10) ◽  
pp. 2321-2326 ◽  
Author(s):  
Ted Mau ◽  
Mindy Du ◽  
Chet C. Xu

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongyan Huang ◽  
Rongguang Wang ◽  
Shiming Yang

Stem cells based tissue engineering has been one of the potential promising therapies in the research on the repair of tissue diseases including the vocal fold. Decellularized extracellular matrix (DCM) as a promising scaffold has be used widely in tissue engineering; however, it remained to be an important issue in vocal fold regeneration. Here, we applied the hydrogels (hyaluronic acid [HA], HA-collagen [HA-Col], and HA-DCM) to determine the effects of hydrogel on the growth and differentiation of human adipose-derived stem cells (hADSCs) into superficial lamina propria fibroblasts. hADSCs were isolated and characterized by fluorescence-activated cell sorting. The results indicated that HA-DCM hydrogel enhanced cell proliferation and prolonged cell morphology significantly compared to HA and HA-Col hydrogel. Importantly, the differentiation of hADSCs into fibroblasts was also promoted by cogels of HA-Col and HA-DCM significantly. The differentiation of hADSCs towards superficial lamina propria fibroblasts was accelerated by the secretion of HGF, IL-8, and VEGF, the decorin and elastin expression, and the synthesis of chondroitin sulfate significantly. Therefore, the cogel of HA-DCM hydrogel was shown to be outstanding in apparent stimulation of hADSCs proliferation and differentiation to vocal fold fibroblasts through secretion of important growth factors and synthesis of extracellular matrix.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pradeep Kumar ◽  
Viness Pillay ◽  
Yahya E. Choonara

AbstractThree-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.


Gels ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 44
Author(s):  
Marfa N. Egorikhina ◽  
Yulia P. Rubtsova ◽  
Diana Ya. Aleynik

The most difficult issue when using tissue engineering products is enabling the ability to store them without losing their restorative capacity. The numbers and viability of mesenchymal stem cells encapsulated in a hydrogel scaffold after cryostorage at −80 °C (by using, individually, two kinds of cryoprotectors—Bambanker and 10% DMSO (Dimethyl sulfoxide) solution) for 3, 6, 9, and 12 months were determined, with subsequent assessment of cell proliferation after 96 h. The analysis of the cellular component was performed using fluorescence microscopy and the two fluorochromes—Hoechst 3334 and NucGreenTM Dead 488. The experimental protocol ensured the preservation of cells in the scaffold structure, retaining both high viability and proliferative activity during storage for 3 months. Longer storage of scaffolds led to their significant changes. Therefore, after 6 months, the proliferative activity of cells decreased. Cryostorage of scaffolds for 9 months led to a decrease in cells’ viability and proliferative activity. As a result of cryostorage of scaffolds for 12 months, a decrease in viability and proliferative activity of cells was observed, as well as pronounced changes in the structure of the hydrogel. The described scaffold cryostorage protocol could become the basis for the development of storage protocols for such tissue engineering products, and for helping to extend the possibilities of their clinical use while accelerating their commercialization.


Sign in / Sign up

Export Citation Format

Share Document