scholarly journals Cogels of Hyaluronic Acid and Acellular Matrix for Cultivation of Adipose-Derived Stem Cells: Potential Application for Vocal Fold Tissue Engineering

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongyan Huang ◽  
Rongguang Wang ◽  
Shiming Yang

Stem cells based tissue engineering has been one of the potential promising therapies in the research on the repair of tissue diseases including the vocal fold. Decellularized extracellular matrix (DCM) as a promising scaffold has be used widely in tissue engineering; however, it remained to be an important issue in vocal fold regeneration. Here, we applied the hydrogels (hyaluronic acid [HA], HA-collagen [HA-Col], and HA-DCM) to determine the effects of hydrogel on the growth and differentiation of human adipose-derived stem cells (hADSCs) into superficial lamina propria fibroblasts. hADSCs were isolated and characterized by fluorescence-activated cell sorting. The results indicated that HA-DCM hydrogel enhanced cell proliferation and prolonged cell morphology significantly compared to HA and HA-Col hydrogel. Importantly, the differentiation of hADSCs into fibroblasts was also promoted by cogels of HA-Col and HA-DCM significantly. The differentiation of hADSCs towards superficial lamina propria fibroblasts was accelerated by the secretion of HGF, IL-8, and VEGF, the decorin and elastin expression, and the synthesis of chondroitin sulfate significantly. Therefore, the cogel of HA-DCM hydrogel was shown to be outstanding in apparent stimulation of hADSCs proliferation and differentiation to vocal fold fibroblasts through secretion of important growth factors and synthesis of extracellular matrix.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Angelou Valerie ◽  
Kalodimou Vassiliki ◽  
Messini Irini ◽  
Psychalakis Nikolaos ◽  
Eleftheria Karampela ◽  
...  

Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid.Study Design. Animal experiment.Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months.Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC.Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.


Author(s):  
Zeinolabedin Sharifian ◽  
Batool Hashemibeni ◽  
Majid Pourentezari ◽  
Ali Valiani ◽  
Mohammad Mardani ◽  
...  

Background and Aims: Tissue engineering is a relatively novel field that has been intensely developing during recent years and has shown to be excessively promising when used for cartilage regeneration. Scaffolds represent important components for tissue engineering. Materials and Methods: The Poly Lactic-Co-Glycolic Acid (PLGA) impregnated with fibrin and hyaluronic acid (HA) produce hybrid scaffolds. human adipose-derived stem cells (hADSCs) were seeded in scaffolds and cultured in chondrogenic media. The viability of cells in different groups was assessed by MTT. The expression of chondrogenic related genes [Sox9, type II collagen (Col II), Aggrecan(AGG)] and type X collagen (Col X) was quantified by real-time polymerase chain reaction. Results: The results of the real-time PCR showed SOX9, AGG and Col X gene expression in the control groups being significantly lower than the other groups (p≤0.05). It also demonstrated Col II gene expression in the control group being significantly lower than the PLGA/Fibrin and PLGA/Fibrin/HA groups (p≤0.05). The Col X gene expression of cells in PLGA/HA and PLGA/Fibrin/HA groups significantly decreased in comparison with the PLGA/Fibrin group (p≤0.05). Conclusions: These conclusions indicate that administration of PLGA/ Fibrin and PLGA/HA scaffolds, particularly PLGA/Fibrin/ HA, motivates chondrogenesis in hADSCs. This can be diminished by decreasing hypertrophic markers and increasing characteristic markers of hyaline cartilage.


2012 ◽  
Vol 18 (1-2) ◽  
pp. 80-92 ◽  
Author(s):  
Ji Suk Choi ◽  
Beob Soo Kim ◽  
Jae Dong Kim ◽  
Young Chan Choi ◽  
Hee Young Lee ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.


2021 ◽  
Vol 8 (2) ◽  
pp. 27
Author(s):  
Claire Benwood ◽  
Josie Chrenek ◽  
Rebecca L. Kirsch ◽  
Nadia Z. Masri ◽  
Hannah Richards ◽  
...  

The most prevalent form of bioprinting—extrusion bioprinting—can generate structures from a diverse range of materials and viscosities. It can create personalized tissues that aid in drug testing and cancer research when used in combination with natural bioinks. This paper reviews natural bioinks and their properties and functions in hard and soft tissue engineering applications. It discusses agarose, alginate, cellulose, chitosan, collagen, decellularized extracellular matrix, dextran, fibrin, gelatin, gellan gum, hyaluronic acid, Matrigel, and silk. Multi-component bioinks are considered as a way to address the shortfalls of individual biomaterials. The mechanical, rheological, and cross-linking properties along with the cytocompatibility, cell viability, and printability of the bioinks are detailed as well. Future avenues for research into natural bioinks are then presented.


2019 ◽  
Vol 5 (1) ◽  
pp. 393-395 ◽  
Author(s):  
Svenja Nellinger ◽  
Silke Keller ◽  
Alexander Southan ◽  
Valentin Wittmann ◽  
Ann-Cathrin Volz ◽  
...  

AbstractNatural extracellular matrix (ECM) represents an ideal biomaterial for tissue engineering and regenerative medicine approaches. For further functionalization, there is a need for specific addressable functional groups within this biomaterial. Metabolic glycoengineering (MGE) provides a technique to incorporate modified monosaccharide derivatives into the ECM during their assembly, which was shown by us earlier for the production of a modified fibroblast-derived dermal ECM. In this study, adipose-derived stem cells (ASCs) were treated with the azide-modified monosaccharide derivate 1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine (Ac4GalNAz). Toxicity and viability assays after 24 h and 72 h incubation revealed high biocompatibility of Ac4GalNAz in contact with ASCs. The successful incorporation of the functional azide groups into the glycocalyx and the ECM of the ASCs was proven by conjugation with a fluorescent dye via a copper-catalyzed click reaction. Thus, Ac4GalNAz in combination with ASCs was confirmed to achieve an azidemodified ECM as a multifunctional biomaterial for further applications.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Xiaofang Yu ◽  
Yucang He ◽  
Zhuojie Chen ◽  
Yao Qian ◽  
Jingping Wang ◽  
...  

Abstract Background: Adipose-derived stem cells have attracted significant interest, especially in stem cell therapy and regenerative medicine. However, these cells undergo gradual premature senescence in long-term cultures, which are essential for clinical applications that require cell-assisted lipotransfer or tissue repair. Methods: Since the extracellular matrix forms the microenvironment around stem cells in vitro and regulates self-renewal and multipotency in part by slowing down stem cell aging, we evaluated its potential to protect against senescence, using H2O2-induced adipose-derived stem cells as a model. Results: We found that supplementing cultures with decellularized extracellular matrix harvested from the same cells significantly promotes proliferation and reverses signs of senescence, including decreased multipotency, increased expression of senescence-associated β-galactosidase, and accumulation of reactive oxygen species. Conclusion: These findings suggest a novel approach in which an autologous decellularized extracellular matrix is used to prevent cellular senescence to enable the use of adipose-derived stem cells in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document