scholarly journals How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure-vacuum swing adsorption

Author(s):  
Sai Gokul Subraveti ◽  
Simon Roussanaly ◽  
Rahul Anantharaman ◽  
Luca Riboldi ◽  
Arvind Rajendran

This paper focuses on identifying the cost limits of two single-stage pressure-vacuum swing adsorption (PVSA) cycles for post-combustion CO2 capture if the ``ideal'' zero-cost adsorbent can be discovered. Through an integrated techno-economic optimisation, we simultaneously optimise the adsorbent properties (adsorption isotherms and particle morphology) and process design variables to determine the lowest possible cost of CO2 avoided (excluding the CO2 conditioning, transport and storage) for different industrial flue gas CO2 compositions and flow rates. The CO2 avoided cost for PVSA ranges from 87.1 to 10.4 € per tonne of CO2 avoided, corresponding to CO2 feed compositions of 3.5 mol% to 30 mol%, respectively. The corresponding costs for a monoethanolamine based absorption process, using heat from a natural gas plant, are 76.8 to 54.8 EUR per tonne of CO2 avoided, respectively showing that PVSA can be attractive for flue gas streams with high CO2 compositions. The ``ideal" adsorbents needed to attain the lowest possible CO2 avoided costs have a range of CO2 affinities with close to zero N2 adsorption, demonstrating promise for adsorbent discovery and development. The need for simultaneously optimizing the particle morphology and the process conditions are emphasized.

2022 ◽  
Vol 306 ◽  
pp. 117955
Author(s):  
Sai Gokul Subraveti ◽  
Simon Roussanaly ◽  
Rahul Anantharaman ◽  
Luca Riboldi ◽  
Arvind Rajendran

2017 ◽  
Vol 114 ◽  
pp. 2467-2480 ◽  
Author(s):  
Paul A. Webley ◽  
Abdul Qader ◽  
Augustine Ntiamoah ◽  
Jianghua Ling ◽  
Penny Xiao ◽  
...  

2013 ◽  
Vol 803 ◽  
pp. 9-12
Author(s):  
Zhen Xiu Wu ◽  
Zhao Hui Sun ◽  
Wen Long Chen ◽  
Guang Chao Du

The exploratory experiments of precipitating vanadium which simulated the process conditions in a vanadium plant with the indexes of vanadium loss and the cost were tested with industrial sulfuric acid and flue-gas sulfuric acid in laboratory, respectively. The technology optimizations were studied by selecting the experimental group with the lowest vanadium loss and cost. The results indicate that the vanadium loss and cost are the lowest by one-step vanadium precipitation with flue-gas sulfuric acid, and the optimum processes are as follows: the pH of solution is adjusted to 2.2 after adding the vanadium precipitation agent; the precipitation is proceeded 1 hour at 99°C or 100°C. The vanadium loss and cost per 1000 kg V2O3 are respectively 3.06 kg and 763.18 yuan by the optimum processes, which are much less than the processes with industrial sulfuric acid.


2014 ◽  
Vol 53 (37) ◽  
pp. 14462-14473 ◽  
Author(s):  
Shreenath Krishnamurthy ◽  
Reza Haghpanah ◽  
Arvind Rajendran ◽  
Shamsuzzaman Farooq

Author(s):  
Maria Elena Diego ◽  
Jean-Michel Bellas ◽  
Mohamed Pourkashanian

Post-combustion CO2 capture from natural gas combined cycle (NGCC) power plants is challenging due to the large flow of flue gas with low CO2 content (∼3–4%vol.) that needs to be processed in the capture stage. A number of alternatives have been proposed to solve this issue and reduce the costs of the associated CO2 capture plant. This work focuses on the selective exhaust gas recirculation (S-EGR) configuration, which uses a membrane to selectively recirculate CO2 back to the inlet of the compressor of the turbine, thereby greatly increasing the CO2 content of the flue gas sent to the capture system. For this purpose, a parallel S-EGR NGCC system (53% S-EGR ratio) coupled to an amine capture plant using MEA 30%wt. was simulated using gCCS (gPROMS). It was benchmarked against an unabated NGCC system, a conventional NGCC coupled with an amine capture plant (NGCC+CCS), and an EGR NGCC power plant (39% EGR ratio) using amine scrubbing as the downstream capture technology. The results obtained indicate that the net power efficiency of the parallel S-EGR system can be up to 49.3% depending on the specific consumption of the auxiliary S-EGR systems, compared to the 49.0% and 49.8% values obtained for the NGCC+CCS and EGR systems, respectively. A preliminary economic study was also carried out to quantify the potential of the parallel S-EGR configuration. This high-level analysis shows that the cost of electricity for the parallel S-EGR system varies from 82.1–90.0 $/MWhe for the scenarios considered, with the cost of CO2 avoided being in the range of 79.7–105.1 $/tonne CO2. The results obtained indicate that there are potential advantages of the parallel S-EGR system in comparison to the NGCC+CCS configuration in some scenarios. However, further benefits with respect to the EGR configuration will depend on future advancements and cost reductions achieved on membrane-based systems.


2021 ◽  
Author(s):  
Hao Lyu ◽  
Oscar Iu-Fan Chen ◽  
Nikita Hanikel ◽  
Mohammad I. Hossain ◽  
Robinson W. Flaig ◽  
...  

Metal-organic framework-808 has been functionalized with 11 amino acids (AA) to produce a series of MOF-808-AA structures. The adsorption of CO2 under flue gas conditions revealed that glycine- and DL-lysine-functionalized MOF-808 (MOF-808-Gly and -DL-Lys) have the highest uptake capacities. Enhanced CO2 capture performance in the presence of water was observed and studied using single-component sorption isotherms, CO2/H2O binary isotherm, and dynamic breakthrough measurements. The key to the favorable performance was uncovered by deciphering the mechanism of CO2 capture in the pores and attributed to the formation of bicarbonate as evidenced by 13C and 15N solid-state nuclear magnetic resonance spectroscopy studies. Based on these results, we examined the performance of MOF-808-Gly in simulated coal flue gas conditions and found that it is possible to capture and release CO2 by vacuum swing adsorption. MOF-808-Gly was cycled at least 80 times with full retention of performance. This study significantly advances our understanding of CO2 chemistry in MOFs by revealing how strongly bound amine moieties to the MOF backbone create the chemistry and environment within the pores, leading to the binding and release of CO2 under mild conditions without application of heat.


2021 ◽  
Vol 256 ◽  
pp. 117832
Author(s):  
Sai Gokul Subraveti ◽  
Simon Roussanaly ◽  
Rahul Anantharaman ◽  
Luca Riboldi ◽  
Arvind Rajendran

Sign in / Sign up

Export Citation Format

Share Document