scholarly journals Chemistry-Mediated Ostwald Ripening in Carbon-Rich C/O Systems at Extreme Conditions

Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence Fried ◽  
Sorin Bastea

There is significant interest in establishing a capability for tailored synthesis of next-generation carbon-based nanomaterials due to their broad range of applications and high degree of tunability. High pressure (e.g. shockwave-driven) synthesis holds promise as an effective discovery method, but experimental challenges preclude elucidating the processes governing nanocarbon production from carbon-rich precursors that could otherwise guide efforts through the prohibitively expansive design space. Here we report findings from large scale atomistically-resolved simulations of carbon condensation from C/O mixtures subjected to extreme pressures and temperatures, made possible by machine-learned reactive interatomic potentials. We find that liquid nanocarbon formation follows classical growth kinetics driven by Ostwald ripening (i.e. growth of large clusters at the expense of shrinking small ones) and obeys dynamical scaling in a process mediated by carbon chemistry in the surrounding reactive fluid. The results provide direct insight into carbon condensation in a representative system and pave the way for its exploration in higher complexity organic materials. They also suggest that simulations using machine-learned interatomic potentials could eventually be employed as in-silico design tools for new nanomaterials.

2021 ◽  
Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence Fried ◽  
Sorin Bastea

There is significant interest in establishing a capability for tailored synthesis of next-generation carbon-based nanomaterials due to their broad range of applications and high degree of tunability. High pressure (e.g. shockwave-driven) synthesis holds promise as an effective discovery method, but experimental challenges preclude elucidating the processes governing nanocarbon production from carbon-rich precursors that could otherwise guide efforts through the prohibitively expansive design space. Here we report findings from large scale atomistically-resolved simulations of carbon condensation from C/O mixtures subjected to extreme pressures and temperatures, made possible by machine-learned reactive interatomic potentials. We find that liquid nanocarbon formation follows classical growth kinetics driven by Ostwald ripening (i.e. growth of large clusters at the expense of shrinking small ones) and obeys dynamical scaling in a process mediated by carbon chemistry in the surrounding reactive fluid. The results provide direct insight into carbon condensation in a representative system and pave the way for its exploration in higher complexity organic materials. They also suggest that simulations using machine-learned interatomic potentials could eventually be employed as in-silico design tools for new nanomaterials.


2021 ◽  
Vol 10 (7) ◽  
pp. 432
Author(s):  
Nicolai Moos ◽  
Carsten Juergens ◽  
Andreas P. Redecker

This paper describes a methodological approach that is able to analyse socio-demographic and -economic data in large-scale spatial detail. Based on the two variables, population density and annual income, one investigates the spatial relationship of these variables to identify locations of imbalance or disparities assisted by bivariate choropleth maps. The aim is to gain a deeper insight into spatial components of socioeconomic nexuses, such as the relationships between the two variables, especially for high-resolution spatial units. The used methodology is able to assist political decision-making, target group advertising in the field of geo-marketing and for the site searches of new shop locations, as well as further socioeconomic research and urban planning. The developed methodology was tested in a national case study in Germany and is easily transferrable to other countries with comparable datasets. The analysis was carried out utilising data about population density and average annual income linked to spatially referenced polygons of postal codes. These were disaggregated initially via a readapted three-class dasymetric mapping approach and allocated to large-scale city block polygons. Univariate and bivariate choropleth maps generated from the resulting datasets were then used to identify and compare spatial economic disparities for a study area in North Rhine-Westphalia (NRW), Germany. Subsequently, based on these variables, a multivariate clustering approach was conducted for a demonstration area in Dortmund. In the result, it was obvious that the spatially disaggregated data allow more detailed insight into spatial patterns of socioeconomic attributes than the coarser data related to postal code polygons.


2017 ◽  
Vol 16 (5) ◽  
pp. 626-644 ◽  
Author(s):  
Elizaveta Sivak ◽  
Maria Yudkevich

This paper studies the dynamics of key characteristics of the academic profession in Russia based on the analysis of university faculty in the two largest cities in Russia – Moscow and St Petersburg. We use data on Russian university faculty from two large-scale comparative studies of the academic profession (‘The Carnegie Study’ carried out in 1992 in 14 countries, including Russia, and ‘The Changing Academic Profession Study’, 2007–2012, with 19 participating countries and which Russia joined in 2012) to look at how faculty’s characteristics and attitudes toward different aspects of their academic life changed over 20 years (1992–2011) such as faculty’s views on reasons to leave or to stay at a university, on university’s management and the role of faculty in decision making. Using the example of universities in the two largest Russian cities, we demonstrate that the high degree of overall centralization of governance in Russian universities barely changed in 20 years. Our paper provides comparisons of teaching/research preferences and views on statements concerning personal strain associated with work, academic career perspectives, etc., not only in Russian universities between the years 1992 and 2012, but also in Russia and other ‘Changing Academic Profession’ countries.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Matthew T. Bryan ◽  
Elizabeth L. Martin ◽  
Aleksandra Pac ◽  
Andrew D. Gilbert ◽  
Feodor Y. Ogrin

AbstractBiological cilia generate fluid movement within viscosity-dominated environments using beating motions that break time-reversal symmetry. This creates a metachronal wave, which enhances flow efficiency. Artificially mimicking this behaviour could improve microfluidic point-of-care devices, since viscosity-dominated fluid dynamics impede fluid flow and mixing of reagents, limiting potential for multiplexing diagnostic tests. However, current biomimicry schemes require either variation in the hydrodynamic response across a cilia array or a complex magnetic anisotropy configuration to synchronise the actuation sequence with the driving field. Here, we show that simple modifications to the structural design introduce phase differences between individual actuators, leading to the spontaneous formation of metachronal waves. This generates flow speeds of up to 16 μm/s as far as 675 μm above the actuator plane. By introducing metachronal waves through lithographic structuring, large scale manufacture becomes feasible. Additionally, by demonstrating that metachronal waves emerge from non-uniformity in internal structural mechanics, we offer fresh insight into the mechanics of cilia coordination.


2010 ◽  
Vol 20-23 ◽  
pp. 700-705
Author(s):  
Tian Yuan ◽  
Shang Guan Wei ◽  
Zhi Zhong Lu

Multi-channel Virtual reality simulation technology is a kind of simulation technology, which support the grand scene and high degree of immersion, has better visualization effect. In this paper, a moving target monitoring collaboratory simulation technology based on multi-channel is studied. Firstly, study the mathematical modeling foundation of Multi-Channel technology systematically, based on the mobile target spatial model and co-simulation technology, select the appropriate applications of multi-channel technology, building laboratory simulation platform and achieved a space-based six-degree of freedom simulation of multi-channel moving target monitoring simulation. The experiment has proved that in multi-channel target monitoring co-simulation technology used in this paper has strong practicality, combine with a moving target-space model and co-simulation technology, the advantages of objective observation to solve the requirements like large-scale, realism, immersion requirements, etc.


This is the first occasion on which I have had the great honour of addressing the Royal Society on this anniversary of its foundation. According to custom, I begin with brief mention of those whom death has taken from our Fellowship during the past year, and whose memories we honour. Alfred Young (1873-1940), distinguished for his contributions to pure mathematics, was half brother to another of our Fellows, Sydney Young, a chemist of eminence. Alfred Young had an insight into the symbolic structure and manipulation of algebra, which gave him a special place among his mathematical contemporaries. After a successful career at Cambridge he entered the Church, and passed his later years in the country rectory of Birdbrook, Essex. His devotion to mathematics continued, however, throughout his life, and he published a steady stream of work in the branch of algebra which he had invented, and named ‘quantitative substitutional analysis’. He lived to see his methods adopted by Weyl in his quantum mechanics and spectroscopy. He was elected to our Fellowship in 1934. With the death of Miles Walker (1868-1941) the Society loses a pioneer in large-scale electrical engineering. Walker was a man of wide interests. He was trained first for the law, and even followed its practice for a period. Later he studied electrical engineering under Sylvanus Thompson at the Finsbury Technical College and became his assistant for several years. Thereafter, encouraged by Thompson, he entered St John’s College, Cambridge, with a scholarship, and graduated with 1st Class Honours in both the Natural Sciences and the Engineering Tripos. Having entered the service of the British Westinghouse Company, he was sent by them to the United States of America to study electrical engineering with the parent company in Pittsburgh. On his return to England he became their leading designer of high-speed electrical generators


2007 ◽  
Vol 98 (4) ◽  
pp. 2089-2098 ◽  
Author(s):  
Sean P. MacEvoy ◽  
Russell A. Epstein

Complex visual scenes preferentially activate several areas of the human brain, including the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the transverse occipital sulcus (TOS). The sensitivity of neurons in these regions to the retinal position of stimuli is unknown, but could provide insight into their roles in scene perception and navigation. To address this issue, we used functional magnetic resonance imaging (fMRI) to measure neural responses evoked by sequences of scenes and objects confined to either the left or right visual hemifields. We also measured the level of adaptation produced when stimuli were either presented first in one hemifield and then repeated in the opposite hemifield or repeated in the same hemifield. Although overall responses in the PPA, RSC, and TOS tended to be higher for contralateral stimuli than for ipsilateral stimuli, all three regions exhibited position-invariant adaptation, insofar as the magnitude of adaptation did not depend on whether stimuli were repeated in the same or opposite hemifields. In contrast, object-selective regions showed significantly greater adaptation when objects were repeated in the same hemifield. These results suggest that neuronal receptive fields (RFs) in scene-selective regions span the vertical meridian, whereas RFs in object-selective regions do not. The PPA, RSC, and TOS may support scene perception and navigation by maintaining stable representations of large-scale features of the visual environment that are insensitive to the shifts in retinal stimulation that occur frequently during natural vision.


Sign in / Sign up

Export Citation Format

Share Document