scholarly journals An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex that Efficiently Promotes the 4e–/4H+ Peractivation of O2 to Water

Author(s):  
Qiuqi Cai ◽  
Linh Tran ◽  
Tian Qiu ◽  
Jennifer Eddy ◽  
Glenn Yap ◽  
...  

The selective 4e–/4H+ reduction of dioxygen to water is an important reaction that takes place at the cathode of fuel cells. Monomeric aromatic tetrapyrroles (such as porphyrins, phthalocyanines, and corroles) coordinated to Co(II) have been considered as oxygen reduction catalysts due to their low cost and relative ease of synthesis. How- ever, these systems have been repeatedly shown to be selective for O2 reduction by the less desired 2e –/2H+ pathway to yield hydrogen peroxide. Herein, we report the initial synthesis and study of a Co(II) tetrapyrrole complex based upon a non-aromatic isocorrole scaffold that is competent for 4e–/4H+ ORR. This Co(II) 10,10-dimethyl isocorrole (Co[10- DMIC]) is obtained in a just four simple steps and excellent yield from a known dipyrromethane synthon. Evaluation of the steady state spectroscopic and redox properties of Co[10-DMIC] against those of Co(II) porphyrin ([Co(TPFPP)]) and corrole ([Co(TPFPC)(PPh3)]) homologs demonstrated that the light harvesting and electrochemical properties of the isocorrole are distinct from those displayed by more traditional aromatic tetrapyrroles. Further, investigation of the ORR activity of Co[10-DMIC] using a combination of electrochemical and chemical reduction studies revealed that this simple, unadorned monomeric Co(II) tetrapyrrole is ~85% selective for the 4e–/4H+ reduction of O2 to H2O over the more kinetically facile 2e–/2H+ process that delivers H2O2. By contrast, the same ORR evaluations conducted for the Co(II) porphyrin and corrole homologs demonstrated that these traditional aromatic systems catalyze the 2e–/2H+ conversion of O2 to H2O2 with near complete selectivity. Despite being a simple, easily prepared, monomeric tetrapyrrole platform, Co[10-DMIC] supports an ORR catalysis that has historically only been achieved using elaborate porphyrinoid-based architectures that incorporate pendant proton-transfer groups, ditopic molecular clefts, or which impose cofacially ori- ented O2 binding sites. Accordingly, Co[10-DMIC] represents the first simple, unadorned, monomeric metalloisocorrole complex that can be easily prepared and which shows a privileged performance for the 4e–/4H+ peractivation of O2 to water as compared to other simple Co(II) tetrapyrroles.

2020 ◽  
Vol 8 (18) ◽  
pp. 9256-9267 ◽  
Author(s):  
Guoquan Zhang ◽  
Li Li ◽  
Mengyao Chen ◽  
Fenglin Yang

A chitosan cross-linked poly(1,5-diaminoanthraquinone)/Prussian blue (PDAA/PB) ternary nitrogen precursor-derived Fe–N–C/800-HT2 catalyst shows highly efficient ORR activity for MFCs and Zn–air batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90076-90081 ◽  
Author(s):  
Lei Zhao ◽  
Yanchao Wang ◽  
Weibin Li

Coal liquefaction residues with a high content of nitrogen were used to prepare N-doped activated carbon as low-cost and high-activity oxygen reduction reaction catalyst.


Author(s):  
Xiaoming Liang ◽  
Xia Liu ◽  
Han Lou ◽  
Huiru Wang ◽  
Hui Li ◽  
...  

Exploring low-cost and high-powered nonprecious metal oxygen reduction catalysts (ORR) in fuel cells and metal-air batteries is critical for the commercialization of these sustainable energy devices. In this article, novel...


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Nguyen Thi Thanh Hai ◽  
Nguyen Duc Cuong ◽  
Nguyen Tran Quyen ◽  
Nguyen Quoc Hien ◽  
Tran Thi Dieu Hien ◽  
...  

Cu nanoparticles are a potential material for creating novel alternative antimicrobial products due to their unique antibacterial/antifungal properties, stability, dispersion, low cost and abundance as well as being economical and ecofriendly. In this work, carboxymethyl cellulose coated core/shell SiO2@Cu nanoparticles (NPs) were synthesized by a simple and effective chemical reduction process. The initial SiO2 NPs, which were prepared from rice husk ash, were coated by a copper ultrathin film using hydrazine and carboxymethyl cellulose (CMC) as reducing agent and stable agent, respectively. The core/shell SiO2@Cu nanoparticles with an average size of ~19 nm were surrounded by CMC. The results indicated that the SiO2@Cu@CMC suspension was a homogenous morphology with a spherical shape, regular dispersion and good stability. Furthermore, the multicomponent SiO2@Cu@CMC NPs showed good antifungal activity against Phytophthora capsici (P. capsici). The novel Cu NPs-based multicomponent suspension is a key compound in the development of new fungicides for the control of the Phytophthora disease.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1145
Author(s):  
Prem. C. Pandey ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Prussian blue nanoparticles (PBN) exhibit selective fluorescence quenching behavior with heavy metal ions; in addition, they possess characteristic oxidant properties both for liquid–liquid and liquid–solid interface catalysis. Here, we propose to study the detection and efficient removal of toxic arsenic(III) species by materializing these dual functions of PBN. A sophisticated PBN-sensitized fluorometric switching system for dosage-dependent detection of As3+ along with PBN-integrated SiO2 platforms as a column adsorbent for biphasic oxidation and elimination of As3+ have been developed. Colloidal PBN were obtained by a facile two-step process involving chemical reduction in the presence of 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (EETMSi) and cyclohexanone as reducing agents, while heterogeneous systems were formulated via EETMSi, which triggered in situ growth of PBN inside the three-dimensional framework of silica gel and silica nanoparticles (SiO2). PBN-induced quenching of the emission signal was recorded with an As3+ concentration (0.05–1.6 ppm)-dependent fluorometric titration system, owing to the potential excitation window of PBN (at 480–500 nm), which ultimately restricts the radiative energy transfer. The detection limit for this arrangement is estimated around 0.025 ppm. Furthermore, the mesoporous and macroporous PBN-integrated SiO2 arrangements might act as stationary phase in chromatographic studies to significantly remove As3+. Besides physisorption, significant electron exchange between Fe3+/Fe2+ lattice points and As3+ ions enable complete conversion to less toxic As5+ ions with the repeated influx of mobile phase. PBN-integrated SiO2 matrices were successfully restored after segregating the target ions. This study indicates that PBN and PBN-integrated SiO2 platforms may enable straightforward and low-cost removal of arsenic from contaminated water.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


2010 ◽  
Vol 114 (35) ◽  
pp. 15190-15195 ◽  
Author(s):  
Tim S. Olson ◽  
Svitlana Pylypenko ◽  
Shyam Kattel ◽  
Plamen Atanassov ◽  
Boris Kiefer

Sign in / Sign up

Export Citation Format

Share Document