scholarly journals Possible Counterexample of the Riemann Hypothesis

Author(s):  
Frank Vega

Under the assumption that the Riemann hypothesis is true, von Koch deduced the improved asymptotic formula $\theta(x) = x + O(\sqrt{x} \times \log^{2} x)$, where $\theta(x)$ is the Chebyshev function. A precise version of this was given by Schoenfeld: He found under the assumption that the Riemann hypothesis is true that $\theta(x) < x + \frac{1}{8 \times \pi} \times \sqrt{x} \times \log^{2} x$ for every $x \geq 599$. On the contrary, we prove if there exists some real number $x \geq 2$ such that $\theta(x) > x + \frac{1}{\log \log \log x} \times \sqrt{x} \times \log^{2} x$, then the Riemann hypothesis should be false. In this way, we show that under the assumption that the Riemann hypothesis is true, then $\theta(x) < x + \frac{1}{\log \log \log x} \times \sqrt{x} \times \log^{2} x$.

2022 ◽  
Author(s):  
Frank Vega

Under the assumption that the Riemann hypothesis is true, von Koch deduced the improved asymptotic formula $\theta(x) = x + O(\sqrt{x} \times \log^{2} x)$, where $\theta(x)$ is the Chebyshev function. A precise version of this was given by Schoenfeld: He found under the assumption that the Riemann hypothesis is true that $\theta(x) < x + \frac{1}{8 \times \pi} \times \sqrt{x} \times \log^{2} x$ for every $x \geq 599$. On the contrary, we prove if there exists some real number $x \geq 2$ such that $\theta(x) > x + \frac{1}{\log \log x} \times \sqrt{x} \times \log^{2} x$, then the Riemann hypothesis should be false. In this way, we show that under the assumption that the Riemann hypothesis is true, then $\theta(x) < x + \frac{1}{\log \log x} \times \sqrt{x} \times \log^{2} x$.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


Author(s):  
Ya-Li Li ◽  
Jie Wu

For any positive integer [Formula: see text], let [Formula: see text] be the number of solutions of the equation [Formula: see text] with integers [Formula: see text], where [Formula: see text] is the integral part of real number [Formula: see text]. Recently, Luca and Ralaivaosaona gave an asymptotic formula for [Formula: see text]. In this paper, we give an asymptotic development of [Formula: see text] for all [Formula: see text]. Moreover, we prove that the number of such partitions is even (respectively, odd) infinitely often.


2021 ◽  
Author(s):  
Frank Vega

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems and it is one of the Clay Mathematics Institute's Millennium Prize Problems. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n> 5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is most likely true.


2011 ◽  
Vol 07 (03) ◽  
pp. 579-591 ◽  
Author(s):  
PAUL POLLACK

For each natural number N, let R(N) denote the number of representations of N as a sum of two primes. Hardy and Littlewood proposed a plausible asymptotic formula for R(2N) and showed, under the assumption of the Riemann Hypothesis for Dirichlet L-functions, that the formula holds "on average" in a certain sense. From this they deduced (under ERH) that all but Oϵ(x1/2+ϵ) of the even natural numbers in [1, x] can be written as a sum of two primes. We generalize their results to the setting of polynomials over a finite field. Owing to Weil's Riemann Hypothesis, our results are unconditional.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n>5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1}>e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}>2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


1998 ◽  
Vol 50 (3) ◽  
pp. 563-580 ◽  
Author(s):  
D. A. Goldston ◽  
C. Y. Yildirim

AbstractConsider the variance for the number of primes that are both in the interval [y,y + h] for y ∈ [x,2x] and in an arithmetic progression of modulus q. We study the total variance obtained by adding these variances over all the reduced residue classes modulo q. Assuming a strong form of the twin prime conjecture and the Riemann Hypothesis one can obtain an asymptotic formula for the total variance in the range when 1 ≤ h/q ≤ x1/2-∈ , for any ∈ > 0. We show that one can still obtain some weaker asymptotic results assuming the Generalized Riemann Hypothesis (GRH) in place of the twin prime conjecture. In their simplest form, our results are that on GRH the same asymptotic formula obtained with the twin prime conjecture is true for “almost all” q in the range 1 ≤ h/q ≤ x1/4-∈, that on averaging over q one obtains an asymptotic formula in the extended range 1 ≤ h/q ≤ x1/2-∈, and that there are lower bounds with the correct order of magnitude for all q in the range 1 ≤ h/q ≤ x1/3-∈.


2021 ◽  
Author(s):  
Frank Vega

For every prime number $q_{n}$, we define the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$, where $\theta(x)$ is the Chebyshev function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. This is known as the Nicolas inequality. The Nicolas criterion states that the Riemann hypothesis is true if and only if the Nicolas inequality is satisfied for all primes $q_{n} > 2$. We prove indeed that the Nicolas inequality is satisfied for all primes $q_{n} > 2$. In this way, we show that the Riemann hypothesis is true.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2410
Author(s):  
Janyarak Tongsomporn ◽  
Saeree Wananiyakul ◽  
Jörn Steuding

In this paper, we prove an asymptotic formula for the sum of the values of the periodic zeta-function at the nontrivial zeros of the Riemann zeta-function (up to some height) which are symmetrical on the real line and the critical line. This is an extension of the previous results due to Garunkštis, Kalpokas, and, more recently, Sowa. Whereas Sowa’s approach was assuming the yet unproved Riemann hypothesis, our result holds unconditionally.


2021 ◽  
Author(s):  
Frank Vega

The Riemann hypothesis has been considered the most important unsolved problem in pure mathematics. The David Hilbert's list of 23 unsolved problems contains the Riemann hypothesis. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n)< e^{\gamma } \times n \times \log \log n$ holds for all natural numbers $n> 5040$, where $\sigma(x)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality $\prod_{q \leq q_{n}} \frac{q}{q-1} > e^{\gamma} \times \log\theta(q_{n})$ is satisfied for all primes $q_{n}> 2$, where $\theta(x)$ is the Chebyshev function. Using both inequalities, we show that the Riemann hypothesis is true.


Sign in / Sign up

Export Citation Format

Share Document