scholarly journals Pengendalian konvergensi eksponensial untuk omnidirectional mobile robot dengan empat roda

JURNAL ELTEK ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 108
Author(s):  
Muhammad Jodi Pamenang ◽  
Indrazno Siradjuddin ◽  
Budhy Setiawan

Tujuan mendasar dari kontrol gerak mobile robot adalah untuk mengarahkan robot ke posisi yang diberikan secara acak pada ruang 2D. Mobile robot dengan roda omni memiliki sifat holonomic di mana memiliki keunggulan kelincahan dan permasalahan pengendalian gerak hanya pada sisi aktuator, sedangkan mobile robot dengan roda konvensional, memiliki permasalahan tambahan pengendalian gerak dalam ruang area operasional robot. Karenanya, robot omni lebih gesit untuk bergerak dalam konfigurasi ruang area kerja apa pun. Makalah ini menyajikan model kontrol konvergensi eksponensial berbasis model untuk mobile robot omnidirectional roda empat. Kontrol yang diusulkan menjamin penurunan kesalahan secara eksponensial dari gerakan robot ke setiap posisi robot yang diinginkan. Pembahasan meliputi model kinematik dan kontrol dari robot bergerak omnidirectional roda empat dan eksperimen simulasi yang telah dilakukan untuk memverifikasi kinerja kontrol yang meliputi lintasan robot 2D, serta nilai error atau kesalahan pada kontrol robot. Hasil dari eksperimen simulasi menunjukkan keefektifan kontrol yang diusulkan. Mobile robot telah bergerak ke posisi yang diinginkan pada garis lurus dengan tujuan robot yang akurat dan niali error atau kesalahan yang didapat ialah |0.02735| serta grafik error telah menurun secara eksponensial.   The fundamental objective of a mobile robot motion control is to navigate the robot to any given arbitrary posture in which robot 2D location and its heading are concerned. Mobile robots with omni wheels have a holonomic properties the advantage is of agility and motion control problems only on the actuator, while mobile robots with conventional wheels, have a problem of motion control the robot in task space. Therefore, the omni-wheeled mobile robots are more agile to move in any task space configuration.  This paper presents a model based exponential convergence control law for a four-wheeled omnidirectional mobile robot. The proposed control law guarantees an exponential error decay of mobile robot motion to any given desired robot posture. The kinematic model and the control law of a four-wheeled omnidirectional mobile robot are discussed. Simulation experiments have been conducted to verify the control law performances which include the 2D robot trajectory, the error signals, and the robot control signals. Results from simulation experiments show the effectiveness of the proposed control law. Mobile robot has moved to the desired position in a straight line with the aim of the robot that is accurate and the error or error obtained is | 0.02735 | and the error graph has decreased exponentially

Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Yaser Maddahi ◽  
Ali Maddahi ◽  
Nariman Sepehri

SUMMARYOdometry errors, which occur during wheeled mobile robot movement, are inevitable as they originate from hard-to-avoid imperfections such as unequal wheels diameters, joints misalignment, backlash, slippage in encoder pulses, and much more. This paper extends the method, developed previously by the authors for calibration of differential mobile robots, to reduce positioning errors for the class of mobile robots having omnidirectional wheels. The method is built upon the easy to construct kinematic formulation of omnidirectional wheels, and is capable of compensating both systematic and non-systematic errors. The effectiveness of the method is experimentally investigated on a prototype three-wheeled omnidirectional mobile robot. The validations include tracking unseen trajectories, self-rotation, as well as travelling over surface irregularities. Results show that the method is very effective in improving position errors by at least 68%. Since the method is simple to implement and has no assumption on the sources of errors, it should be considered seriously as a tool for calibrating omnidirectional mobile having any number of wheels.


2012 ◽  
Vol 433-440 ◽  
pp. 2596-2601 ◽  
Author(s):  
Guang Xin Han ◽  
Yan Hui Zhao

In this paper trajectory tracking control problem for nonholonomic wheeled mobile robots with the actuator dynamics being considered is studied. On the basis of rotation error transformation and backstepping technique, tracking control law designed for kinematic model is backstepped into dynamic model and furthermore actuator dynamics is involved. Closed-loop stability is guaranteed by Lyapunov theory and Routh-Hurwitz Criterion. Finally simulation results for tracking typical trajectory are presented.


2002 ◽  
Vol 14 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Kuniaki Kawabata ◽  
◽  
Tsuyoshi Suzuki ◽  
Hayato Kaetsu ◽  
Hajime Asama

We detail an omnidirectional mobile platform for research and development (R&D). In 1995, we reported that a special driving mechanism for holonomic omnidirectional mobile robots was designed to enable 3 degree of freedom (DOF) motion control by 3 corresponding actuators decoupled with no redundancy. We constructed a omnidirectional mobile robot prototype with a drive. We took part in a RoboCup tournament as Uttori United with omnidirectional mobile robots: ZEN-450, using our driving mechanism, in 1997, and 2000. ZEN-450 showed high mobility during the tournament However, unpredictable problems occurred because ZEN-450 is not developed for robotic soccer. , We considered improving its hardware as a platform. We report the new platform and test-running results.


Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 627-638 ◽  
Author(s):  
Luis Gracia ◽  
Josep Tornero

SUMMARYThis research presents a new and generic geometric approach that characterizes the kinematic singularity of wheeled mobile robots. First, the kinematic models of all the common wheels are obtained: fixed, centered orientable, castor, and Swedish. Then, a procedure for generating robot kinematic models is presented based on the set of wheel equations and the null space concept. Next, two examples are developed to illustrate the nongeneric singularity characterization. In order to improve that approach, a generic and practical geometric approach is established to characterize the singularity of any kinematic model of a wheeled mobile robot (WMR). Finally, the singular configurations for many types of mobile robots are depicted employing the proposed approach.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Mahmood Reza Azizi ◽  
Alireza Rastegarpanah ◽  
Rustam Stolkin

Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles.


Sign in / Sign up

Export Citation Format

Share Document