scholarly journals Further Studies on the Relationship of Egg Production Rate as Affected by Feed to Haugh Units of Eggs

1962 ◽  
Vol 41 (2) ◽  
pp. 578-580 ◽  
Author(s):  
R.H. Harms ◽  
W.B. Lester ◽  
P.W. Waldroup
Author(s):  
S. G. Karthik ◽  
Edward B. Magrab

Abstract An intelligent graphical user interface that captures a product’s functional and assembly structure and the factory that will make it are described. The results are then used to evaluate a factory’s production rate for the product. The program requires the product to be either a functionally uncoupled or decoupled design. The interface then: (1) implements a visualization of the functionally decomposed product structure; (2) implements an abstraction of a factory; (3) automatically generates candidate primary manufacturing processes and materials that are compatible with each other based on a very small number of attributes; (4) enables the user to make Make/Buy decisions for the components comprising the product; (5) assists the user in the selection of secondary manufacturing processes that are compatible with the primary manufacturing processes and materials for parts made in-house, and specify the vendor and the supply lead time for outsourced parts; (6) enables the specification of alternate materials and manufacturing processes; (7) implements a visual representation of the assembly structure as specified by the user; and (8) partially automates the creation of the assembly structure, and assists in the selection of assembly methods that are compatible with the materials chosen. In addition, the program assists in the design for assembly by: (1) requiring the product development team to think about the assembly process early in the design stage; (2) providing a visualization of the relationship of all components comprising the product to its other components; (3) requiring the specification of the order in which they are to be assembled; and (4) requiring the selection of assembly processes that are compatible with each other and the materials chosen. It also requires the specification of the capabilities of the factory that is going to make one or more of the components of the product, and requires that Make/Buy decisions for the parts comprising the product be made.


2019 ◽  
Vol 41 (5) ◽  
pp. 741-758 ◽  
Author(s):  
Josephine GrØnning ◽  
Nam X Doan ◽  
Nguyet T Dinh ◽  
Khuong V Dinh ◽  
Torkel Gissel Nielsen

ABSTRACT The calanoid copepod Pseudodiaptomus annandalei is used as live feed in aquaculture because of its nutritional value and the ability to cope with environmental fluctuations in outdoor ponds. However, little knowledge exists on its ecology. Here we investigated the ecology of P. annandalei in an aquaculture pond in Vietnam. Temperature, salinity, chlorophyll a and biomass of protozoans and copepods were monitored every other day for 1 month. Experiments on protozoan growth and grazing by P. annandalei were also conducted. Copepod fecal pellet production and temperature-dependent egg hatching rates were likewise quantified. Despite very high phytoplankton biomass, biomass of P. annandalei was surprisingly low. Copepod production was estimated from three independent methods: clearance, weight-specific egg production rate (SEP) and specific fecal pellet production rate. SEP proved to be accurate to predict the in situ population growth in the pond. A simple model for production of P. annandalei based on SEP was developed. Our study extends our knowledge of how environmental conditions in the pond may affect the population dynamics and production of copepods. The results have important implications for pond managements ensuring stable copepod production and harvest.


1934 ◽  
Vol 13 (4) ◽  
pp. 242-249 ◽  
Author(s):  
M. Wayne Miller ◽  
J.S. Carver

1948 ◽  
Vol 27 (6) ◽  
pp. 719-726 ◽  
Author(s):  
Wilbor O. Wilson

2001 ◽  
Vol 58 (4) ◽  
pp. 647-658 ◽  
Author(s):  
Stéphane Plourde ◽  
Pierre Joly ◽  
Jeffrey A Runge ◽  
Bruno Zakardjian ◽  
Julian J Dodson

The life cycle of Calanus finmarchicus in the lower St. Lawrence estuary is described based on observations of female egg production rate, population stage abundance, and chlorophyll a biomass collected over 7 years (1991–1997) at a centrally located monitoring station. The mean seasonal pattern shows maximum abundance of females in May, but peak population egg production rate and naupliar (N3–N6) abundance occur in early July just after onset of the late spring – early summer phytoplankton bloom. The population stage structure is characterized by low summer abundance of early copepodite stages C1–C3 and high stage C5 abundance in autumn. Between 1994 and 1997, there was important interannual variation in both timing (up to 1 month) and amplitude (five- to eight-fold) of population reproduction. Patterns of seasonal increase of C5 abundance in autumn suggest interannual variations of both timing and magnitude of deep upstream advection of this overwintering stage. Thus, the main features of C. finmarchicus population dynamics in the central lower St. Lawrence Estuary are (i) late reproduction resulting from food limitation prior to the onset of the summer phytoplankton bloom, (ii) probable export of early developmental stages during summer, and (iii) advection into the central lower St. Lawrence Estuary of overwintering stage C5 in autumn from downstream regions. These results support the hypothesis that circulation, mainly driven by discharge from the St. Lawrence River and its tributaries, is a key factor governing population dynamics of C. finmarchicus in this region.


Sign in / Sign up

Export Citation Format

Share Document