Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production

2019 ◽  
Vol 41 (5) ◽  
pp. 741-758 ◽  
Author(s):  
Josephine GrØnning ◽  
Nam X Doan ◽  
Nguyet T Dinh ◽  
Khuong V Dinh ◽  
Torkel Gissel Nielsen

ABSTRACT The calanoid copepod Pseudodiaptomus annandalei is used as live feed in aquaculture because of its nutritional value and the ability to cope with environmental fluctuations in outdoor ponds. However, little knowledge exists on its ecology. Here we investigated the ecology of P. annandalei in an aquaculture pond in Vietnam. Temperature, salinity, chlorophyll a and biomass of protozoans and copepods were monitored every other day for 1 month. Experiments on protozoan growth and grazing by P. annandalei were also conducted. Copepod fecal pellet production and temperature-dependent egg hatching rates were likewise quantified. Despite very high phytoplankton biomass, biomass of P. annandalei was surprisingly low. Copepod production was estimated from three independent methods: clearance, weight-specific egg production rate (SEP) and specific fecal pellet production rate. SEP proved to be accurate to predict the in situ population growth in the pond. A simple model for production of P. annandalei based on SEP was developed. Our study extends our knowledge of how environmental conditions in the pond may affect the population dynamics and production of copepods. The results have important implications for pond managements ensuring stable copepod production and harvest.

2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Camus ◽  
Lucrezia Rolla ◽  
Jufeng Jiang ◽  
Chaoshu Zeng

The optimization of copepod feeding protocol is paramount to improve culture productivity and to maintain favorable water quality parameters overtime, as well as saving operational costs by preventing the production of unnecessary quantities of microalgae. The influence of microalgal feeding concentration on major parameters related to culture productivity of the calanoid copepod Bestiolina similis (Paracalanidae) was investigated in a series of laboratory experiments. B. similis was fed eight different concentrations (0, 150, 300, 600, 900, 1,200, 1,500 and 1,800 μgC l–1) of a mixed microalgal diet consisting of Tahitian strain of Isochrysis species, Pavalova 50 and Tetraselmis chuii at 1:1:1 carbon ratio. The results indicate that female daily and cumulative egg production over lifespan, egg hatching rate, naupliar and copepodite survival and development, adult female life expectancy, population growth and fecal pellet production rate (FPPR) were all significantly affected by microalgae feeding ration. Conversely, no significant influence could be established between microalgae food concentration and egg diameter or adult sex ratio. Feeding rations as low as 150 μgC l–1 led to lower egg hatching rates, survival and development, adult female life expectancy and population growth compared with the higher microalgae rations tested. Feeding concentration ≤ 900 μgC l–1 significantly limited female daily egg and fecal pellet production rate, as well as their cumulative egg production over lifespan, when compared to a level of 900 μgC l–1. Bestiolina similis fed with 1,200 μgC l–1 significantly improved female egg and fecal pellet production when compared to the lower treatments and was responsible for the highest female lifespan egg production and population growth observed among all treatments. Feeding rations as high as 1,500 μgC l–1 and 1,800 μgC l–1 did not lead to significant improvement in any of the parameters measured. This is likely due to a saturation effect at high food concentration which is known to decrease calanoid copepods feeding efficiency. Finally, B. similis FPPR, used as a proxy for ingestion, was found to saturate at a microalgae concentration of 783.4 μgC l–1 using a non-linear Michael-Menton (2 parameters), indicating that CVI female ingestion did not increase significantly above this concentration. Based on the above results it is recommended that B. similis cultures should be fed at a concentration of 1,200 μgC l–1, and not above, as rations > 1,200 μgC l–1 will not significantly improve any of the productivity-related parameters observed in this study. Feeding rations should never be below 783.40 μgC l–1 as this is the threshold level below which adult female ingestion rates become limiting.


1987 ◽  
Vol 44 (11) ◽  
pp. 2009-2012 ◽  
Author(s):  
Jeffrey A. Runge

A method for determining Calanus egg production rates from preserved, net-tow samples is proposed. In the sea off Nova Scotia, in situ egg production rates (eggs per female per day) of Calanus finmarchicus are significantly related to an index of gonadal development in preserved females. This relationship could be used in combination with data on female abundance to estimate daily production of eggs in the water column. The method is illustrated with data from a transect across Browns Bank.


1948 ◽  
Vol 27 (6) ◽  
pp. 719-726 ◽  
Author(s):  
Wilbor O. Wilson

2001 ◽  
Vol 58 (4) ◽  
pp. 647-658 ◽  
Author(s):  
Stéphane Plourde ◽  
Pierre Joly ◽  
Jeffrey A Runge ◽  
Bruno Zakardjian ◽  
Julian J Dodson

The life cycle of Calanus finmarchicus in the lower St. Lawrence estuary is described based on observations of female egg production rate, population stage abundance, and chlorophyll a biomass collected over 7 years (1991–1997) at a centrally located monitoring station. The mean seasonal pattern shows maximum abundance of females in May, but peak population egg production rate and naupliar (N3–N6) abundance occur in early July just after onset of the late spring – early summer phytoplankton bloom. The population stage structure is characterized by low summer abundance of early copepodite stages C1–C3 and high stage C5 abundance in autumn. Between 1994 and 1997, there was important interannual variation in both timing (up to 1 month) and amplitude (five- to eight-fold) of population reproduction. Patterns of seasonal increase of C5 abundance in autumn suggest interannual variations of both timing and magnitude of deep upstream advection of this overwintering stage. Thus, the main features of C. finmarchicus population dynamics in the central lower St. Lawrence Estuary are (i) late reproduction resulting from food limitation prior to the onset of the summer phytoplankton bloom, (ii) probable export of early developmental stages during summer, and (iii) advection into the central lower St. Lawrence Estuary of overwintering stage C5 in autumn from downstream regions. These results support the hypothesis that circulation, mainly driven by discharge from the St. Lawrence River and its tributaries, is a key factor governing population dynamics of C. finmarchicus in this region.


1962 ◽  
Vol 41 (2) ◽  
pp. 578-580 ◽  
Author(s):  
R.H. Harms ◽  
W.B. Lester ◽  
P.W. Waldroup

Sign in / Sign up

Export Citation Format

Share Document