scholarly journals Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens

2017 ◽  
Vol 96 (12) ◽  
pp. 4342-4351 ◽  
Author(s):  
B Grenier ◽  
H E Schwartz-Zimmermann ◽  
C Gruber-Dorninger ◽  
I Dohnal ◽  
M Aleschko ◽  
...  
2019 ◽  
Vol 59 (12) ◽  
pp. 2131 ◽  
Author(s):  
W. L. Chen ◽  
M. F. Jahromi ◽  
S. C. L. Candyrine ◽  
J. B. Liang ◽  
N. Abdullah ◽  
...  

The effectiveness of enzymatic hydrolysis of palm-kernel expeller (PKE) is dependent on various factors that influence the stability and functionality of the enzymes. In the present study, parameters influencing the enzymatic treatment of PKE were optimised employing response surface methodology. In addition, the effectiveness of enzymatic hydrolysed PKE in increasing inclusion rates in broiler diets was evaluated. Results showed that temperature, enzyme concentration and duration of hydrolysis had significant (P < 0.01) effects on the enzymatic hydrolysis of PKE. Using the crude enzyme produced by Aspergillus terreus K1 isolated in our laboratory, maximum reduction of crude fibre (40%) was achieved by fermenting the PKE at 60% initial moisture with 9.0 U/g PKE mannanase at 51°C for 18 h, with the production of 9.9% (w/w) of monosaccharides and oligosaccharides. Results of the growth-performance study indicated that inclusion rate of PKE with or without enzyme treatment in broiler diet is 5% for starter period and 20% for the finisher diet, without any detrimental effect on animal performance. Although the inclusion rate of enzyme-treated PKE can be increased to 30% without affecting average daily gain, feed conversion ratio of the birds will be compromised.


Author(s):  
Marcin Lukasiewicz ◽  
Anna Osowiec ◽  
Magdalena Marciniak

2018 ◽  
Author(s):  
Ángel Batallas ◽  
Erenio González ◽  
Carmen Salvador ◽  
Jonathan Villavicencio ◽  
Humberto González Gavilánez ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2020 ◽  
Vol 204 ◽  
pp. 106407 ◽  
Author(s):  
Shengxin An ◽  
Wenzhi Li ◽  
Fengyang Xue ◽  
Xu Li ◽  
Ying Xia ◽  
...  

2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2014 ◽  
Vol 98 (12) ◽  
pp. 5765-5774 ◽  
Author(s):  
Yaping Shang ◽  
Rongxin Su ◽  
Renliang Huang ◽  
Yang Yang ◽  
Wei Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document