scholarly journals On Energy Efficient Mobile Hydraulic Systems: with Focus on Linear Actuation

2017 ◽  
Author(s):  
Kim Heybroek
Author(s):  
Janne Koivumäki ◽  
Jouni Mattila

In order to achieve higher energy efficiency for hydraulic systems the Load Sensing (LS) systems, i.e. a Variable Displacement Pump (VDP) with hydro-mechanical control system, can be considered as a state-of-the-art solution. However, as is well known, these traditional hydraulic LS-systems are usually characterized by difficulties in tuning, which can lead to system stability problems. In our previous studies, we have developed a high precision motion control for hydraulic manipulators with separate meter-in meter-out controlled hydraulic actuators. Our control approach was based on the Virtual Decomposition Control (VDC) approach that ensured high motion tracking performance while rigorously guaranteeing the system stability. In this paper, we propose both energy-efficient and high performance nonlinear model based motion control scheme that utilizes the developed servocontrolled Electric Load Sensing (ELS) system for hydraulic robotic manipulators. Experimental results are presented with the proposed ELS-controlled VDP and hydraulic manipulator lifting servoactuator that utilized a separate meter-in meter-out flow control scheme.


2013 ◽  
Author(s):  
Andrew Fellner ◽  
Steffen Fischer

High fuel costs, stringent exhaust emission standards and increased engine performance demands are resulting in new “green” solutions to fulfill the requirements of the engine market. Increases in engine efficiency with a simultaneous reduction of emissions is the goal, this paper will demonstrate hydraulic solutions to increase efficiency of large marine and stationary use engines; with the caveat that detailed analyses of application is required to properly apply engine system optimizations.


2013 ◽  
Vol 3 (2) ◽  
pp. 50-55 ◽  
Author(s):  
Steffen Fischer

2014 ◽  
Vol 8 (2) ◽  
pp. 90-98 ◽  
Author(s):  
Hang YUAN ◽  
Yaoxing SHANG ◽  
Milos VUKOVIC ◽  
Shuai WU ◽  
Hubertus MURRENHOFF ◽  
...  

2021 ◽  
Author(s):  
Aleks Petrovič ◽  
Mihael Janežič ◽  
Vito Tič

Direct Driven Servo Hydraulic Actuator also known as Pump Direct Driven Cylinder (PDDC) represents a decentralized modern concept of energy efficient cylinder control without damping loses of direction valves. Such systems have many advantages over conventional hydraulic systems and combine benefits of hydraulic and electric drives. PDDC system developed in Laboratory for Oil Hydraulics at University of Maribor consists of hydro motor, which is used as a reversible pump that is directly driven by servomotor and is designed for experimental testing with differential hydraulic cylinder. In this paper, the aforementioned system runs experimental setup for force control of hydraulic cylinder, with load produced by pneumatic bellow.


2011 ◽  
Author(s):  
B. Smitha Shekar ◽  
M. Sudhakar Pillai ◽  
G. Narendra Kumar

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Sign in / Sign up

Export Citation Format

Share Document