Energy Efficient Hydraulic Systems for Large Engines

2013 ◽  
Author(s):  
Andrew Fellner ◽  
Steffen Fischer

High fuel costs, stringent exhaust emission standards and increased engine performance demands are resulting in new “green” solutions to fulfill the requirements of the engine market. Increases in engine efficiency with a simultaneous reduction of emissions is the goal, this paper will demonstrate hydraulic solutions to increase efficiency of large marine and stationary use engines; with the caveat that detailed analyses of application is required to properly apply engine system optimizations.

2011 ◽  
Vol 383-390 ◽  
pp. 1423-1430
Author(s):  
Zuo Yu Sun ◽  
Xiang Rong Li ◽  
Liang Ping Guo ◽  
Xue Yan Zhang

For the growing importance of future emission restrictions and the expanding requirement for a better fuel economy, the internal combustion engines are forced to be improved for the high strengthening direction. However, the heat loads of the engine is increasing according to the increasing of engine speed and power density, hence, the cooling system is faced to more challenge. For the cooling system is one of the key system which has more effect on the engine efficiency, fuel economy, and exhaust heats; optimize the matching control cooling system becomes one of the key technology to improve the engine performance. In this paper, several overall schemes of the cooling system are analyzed and discussed, and then one design scheme is determined to the optimal for the current diesel engine. A whole engine system is established by the software GT-Power, and the cooling system in the engine system is established by GT-Cool based on the above optimal scheme. During the simulation, the influence on the heat dissipating capability brought by the control parameters, injection advance angle, power, and torque are investigated. At last, the requirement of the heat released under full conditions is analyzed, and the relationship of the fuel consumption and the control parameters is investigated.


2012 ◽  
Vol 433-440 ◽  
pp. 2670-2679
Author(s):  
Zuo Yu Sun ◽  
Xiang Rong Li ◽  
Liang Ping Guo ◽  
Xue Yan Zhang

For the growing importance of future emission restrictions and the expanding requirement for a better fuel economy, the internal combustion engines are forced to be improved for the high strengthening direction. However, the heat loads of the engine is increasing according to the increasing of engine speed and power density, hence, the cooling system is faced to more challenge. For the cooling system is one of the key system which has more effect on the engine efficiency, fuel economy, and exhaust heats; optimize the matching control cooling system becomes one of the key technology to improve the engine performance. In this paper, several overall schemes of the cooling system are analyzed and discussed, and then one design scheme is determined to the optimal for the current diesel engine. A whole engine system is established by the software GT-Power, and the cooling system in the engine system is established by GT-Cool based on the above optimal scheme. During the simulation, the influence on the heat dissipating capability brought by the control parameters, injection advance angle, power, and torque are investigated. At last, the requirement of the heat released under full conditions is analyzed, and the relationship of the fuel consumption and the control parameters is investigated.


Author(s):  
Jongyoon Lee ◽  
Jayun Cho ◽  
Dockoon Yoo

Fuel efficiency is the key buying factor in the non-road diesel engine market, because the engine mainly operates in the high torque region and consumes relatively large amount of fuel in a short term. A compression ratio of diesel engine is deeply related to a thermal efficiency and it is one of the key design parameter influencing on the fuel efficiency. In this paper, the new approach to select compression ratio is described and the design constrains such as in-cylinder max allowable pressure, max allowable temperature at turbine front end and max allowable temperature at compressor back end were considered. The base engine is 3.4 liter non-road diesel engine without EGR (Exhaust Gas Recirculation) system for Stage V emission standards and is originated from the same engine system with EGR system to meet Tier 4 Final emission standards. Its official compression ratio is 17.0. The purpose of this study is to select an optimal compression ratio for non-road diesel engine system with non-EGR system to meet Stage V emission standards. The methodology to be presented in this study is based on the 1-D engine performance simulations, the 3-D CFD (Computational Fluid Dynamics) combustion simulations, and the engine bench test. In these simulations, a compression ratio and a SOI (Start of Injection) were considered for sweeping parameters. With analyzing the results of parameter studies and engine design constraints, an optimal compression ratio is found to be 18.0. As a result of many engine bench tests, a fuel consumption has been improved by 1.5% with new piston bowl of which compression ratio is 18.0, meeting Stage V emission standards.


Transport ◽  
2004 ◽  
Vol 19 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Algis Butkus ◽  
Saugirdas Pukalskas

Looking forward to Lithuania becoming a member of the EU it is very important to use a larger amount of renewing fuel. Based on economic and environmental considerations in Lithuania, we are interested in studying the effects of ethanol contents in the blended ethanol‐petrol fuel on the engine performance and pollutant emission of SI engine. Therefore, we used engine test facilities to investigate the effects on the engine performance and pollutant emission of 3,5 % and 7,0 % ethanol in the fuel blend and special additives, which reduce emissions and increase octane rating. The tests were carried out in the laboratory on a chassis dynamometer with two different cars. The experiment results showed that ethanol used in a fuel blend with petrol had a positive influence on engine performance and exhaust emission.


Author(s):  
Eeshan Ranade

Automobile industry’s focus is on efficiency, safety and performance has resulted in the rapid introduction of electronics in vehicle safety systems and engine management. Mechanical and Hydraulic systems are now gradually being replaced by electronic controllers to achieve the objectives of optimizing power consumption, improving driver convenience, and maximizing driver safety resulting in an overall improved performance and experience. Vehicle steering systems have transitioned from mechanical to hydraulic power to an electric power assisted steering system and now to the state of the art, Steer by Wire (SbW) system. Traditional mechanical systems included a steering wheel, column, gear, rack and pinion and did not support any power steering. The next generation hydraulic systems were more stable, safer and required comparatively lesser effort. Electric or DC motors drove the Electric Power System addressing the drawbacks of the hydraulic systems especially those related to environment and acoustics with the added advantage of a compact structure and power-on-demand engine performance. By-wire steering technologies was originally introduced in the Concord aircraft in 1970s. The SbW is a steering system with no steering column. The mechanical interface between the steering wheel and the wheels is replaced with by-wire electrical connection/electronic actuators. SbW system has significant advantages in terms of driving safety due to the availability of the steering command in electronic form and the removal of the steering shaft, cruising comfort with driving manoeuvring due to no space constraint and favourable to the environment with the non-usage of hydraulic oils.


2013 ◽  
Vol 774-776 ◽  
pp. 784-790
Author(s):  
S.M. Palash ◽  
M.A. Kalam ◽  
H.H. Masjuki ◽  
B.M. Masum

To meet stringent exhaust emission norms worldwide, various exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Using antioxidant additives in biodiesel fuels is a promising and effective NOx reduction technology. Non-edible jatropha oil based methyl ester was produced and blended with conventional diesel. Five fuel samples (Diesel, JB5, JB5DPPD0.15%, JB15 and JB15DPPD0.15%) were tested for their use as substitute fuel for a radiator-cooled four cylinder diesel engine. Experiment results show that DPPD antioxidant additive could be reduced NOx emission significantly with slight penalty on engine performance as well as CO and HC emission. However, when compared to diesel combustion the emissions of HC and CO were found nearly same or below. By addition of 0.15% (m) DPPD additive in JB5 and JB15 reduction of NOx emission were 12.68% and 13.36 % compared to biodiesel blends without additive at full throttle position. As conclusion, JB5 and JB15 with addition of 0.15% (m) can be used in four cylinder diesel engine to reduce NOx and consequently overcome the barrier to market expansion of biodiesel fuels.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


Sign in / Sign up

Export Citation Format

Share Document