scholarly journals COMPARING THE ASSOCIATION OF ARBUSCULAR MYCORRHIZAL FUNGI WITH WHEAT CROP FROM DISTRICT MARDAN AND CHARSADDA

2017 ◽  
Vol 29 (1) ◽  
pp. 79
Author(s):  
Tabassum Yaseen ◽  
Muhammad Shakeel ◽  
Farman Ullah

Arbuscular mycorrhizal fungi (AMF) are one of the important microbes of the soil microflora which can interact with other soil microbes or plant roots. AM fungi have been known to improve nutrients uptake of plants from deep soil regions where plant roots cannot normally reach and results in improved plant growth. The present study was conducted to investigate the presence of AM fungi during various growth stages of Wheat (Triticum aestivum, L.) crops grown in different locations of District Mardan and District Charsadda, KP, Pakistan and to determine the relationship between AM fungi and physiochemical characteristic of soil. A total of fifteen wheat fields were studied at host growth stages (vegetative stage and fruiting stage). All the wheat fields were found to have AMF association ranged from 24-100%, 27-171gm-200 spores density. The results showed that the highest AMF root colonization and spores density has been found at fruiting stage as compared to vegetative stage. This study reports three species of AM fungi i.e. Glomus spp., Sclerocystis spp. and Acaulospora spp. from the studied sites on the basis of spore identification. This study also reports that in vegetative stage of wheat, the Glomus species was in abundance and in fruiting stage, Sclerocystis species was abundant. Glomus species was observed to be dominant at all stages and locations.

2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.


2007 ◽  
Vol 64 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Milene Moreira ◽  
Dilmar Baretta ◽  
Siu Mui Tsai ◽  
Sandra Maria Gomes-da-Costa ◽  
Elke Jurandy Bran Nogueira Cardoso

Araucaria angustifolia (Bert.) O. Ktze. is an endangered Brazilian coniferous tree that has been almost exterminated in the native areas because of uncontrolled wood exploitation. This tree has been shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) and, therefore, AMF may be essential for forest sustainability and biological diversity. Root colonization, density and diversity of AMF spores were assessed in two Araucaria forest stands at the State Park of Alto Ribeira (PETAR), at two sampling dates: May and October. A comparison was made between a mature native stand composed of Araucaria trees mixed into a variety of tropical trees and shrubs, without any sign of anthropogenic interference (FN) and an Araucaria stand planted in 1987 (R), which has been used as a pasture. Assessments included percent root colonization, AMF spore numbers and species richness, Simpson's dominance index (Is), and Shannon's diversity index (H). Mycorrhizal root colonization did not differ between ecosystems in May. In October, however, the native stand (FN) presented a higher colonization than the planted forest (R), and the root colonization was more intense than in May. When considering both sampling periods and forests, 27 species of AM fungi, with higher numbers of spores in FN than in R were found. Canonical discriminant analysis (CDA) indicated Shannon's diversity index as the ecological attribute that contributed the most to distinguish between forest ecosystems, with higher value of H in FN in relation to R. CDA showed to be a useful tool for the study of ecological attributes.


2012 ◽  
Vol 77 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Anna Lisek ◽  
Lidia Sas Paszt ◽  
Beata Sumorok

Summary In organic farming, mineral fertilizers are replaced by various preparations to stimulate plant growth and development. Introduction of new biopreparations into horticultural production requires an assessment of their effects on the growth and yielding of plants. Among the important indicators of the impact on plants of beneficial microorganisms contained in bioproducts is determination of their effectiveness in stimulating the growth and yielding of plants. Moreover, confirmation of the presence of arbuscular mycorrhizal (AM) fungi in the roots and plant growth promoting rhizobacteria (PGPR) in the rhizosphere is also necessary. In addition to conventional methods, molecular biology techniques are increasingly used to allow detection and identification of AM fungi in plant roots. The aim of this study was identification and initial taxonomic classification of AM fungi in the roots of ‘Elkat’ strawberry plants fertilized with various biopreparations using the technique of nested PCR. Tests were performed on DNA obtained from the roots of ‘Elkat’ strawberry plants: not fertilized, treated with 10 different biopreparations, or fertilized with NPK. Amplification of the large subunit of ribosomal gene (LSU rDNA) was carried out using universal primers, and then, in the nested PCR reaction, primers specific for the fungi of the genera Glomus, Acaulospora, and Scutellospora were used. Colonization of strawberry roots by arbuscular mycorrhizal fungi was determined on the basis of the presence of DNA fragments of a size corresponding to the types of the fungi tested for. As a result of the analyses, the most reaction products characterizing AM fungi were found in the roots of plants treated with the preparation Florovit Eko. The least fragments characteristic of AM fungi were detected in the roots of plants fertilized with NPK, which confirms the negative impact of mineral fertilizers on the occurrence of mycorrhizal fungi in the roots of strawberry plants. The roots of plants fertilized with Tytanit differed from the control plants by the presence of one of the clusters of fungi of the genus Glomus and by the absence of a cluster of fungi of the genus Scutellospora. In the roots of plants treated with other biopreparations there were reaction products indicating the presence of fungi of the genera Glomus, Scutellospora and Acaulospora, like in the roots of the control plants. The results will be used to assess the suitability of microbiologically enriched biopreparations in horticultural production.


2010 ◽  
Vol 61 (5) ◽  
pp. 399 ◽  
Author(s):  
K. J. Owen ◽  
T. G. Clewett ◽  
J. P. Thompson

Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a ‘biofumigation’ potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957–5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033–41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season’s treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.


2021 ◽  
Vol 10 (3) ◽  
pp. 217-228
Author(s):  
Herath BMMD ◽  
Madushan KWA ◽  
Lakmali JPD ◽  
Yapa PN

Human activities have introduced large amounts of heavy metals into natural ecosystems in recent years. As a result, the accumulation of heavy metals and metalloids in plants, animals, and humans, which may have caused some health problems. Chemical and physical methods can remove the heavy metal in contaminated soil, but both are very expensive and ineffective. Arbuscular Mycorrhizal Fungi (AMF) are mutualistic symbionts in most plant roots. Furthermore, AMF are the essential mycorrhizae for phytoremediation, and the extensive hyphal network of them can increase the uptake of micro and macronutrients, water and heavy metals from the soil. However, AMF hyphae colonized in plant roots have an ability for compartmentalizing heavy metals inside plant roots. Furthermore, AMF hyphae are capable of secreting a glycoprotein, named glomalin, which can bind heavy metals and subsequently remove heavy metals absorbed by the plants from contaminated soil. Glomalin can develop the properties and structure of the soil, which helps to enhance soil fertility. This paper presents the role of AMF in the ecosystems and as potential tools for bioremediation of heavy metals in the soil.


ZOOTEC ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 167
Author(s):  
Rifa E. Ansiga ◽  
A. Rumambi ◽  
D. A. Kaligis ◽  
I. Mansur ◽  
W. Kaunang

EXPLORATION OF ARBUSCULAR MYCORRHIZAL (AM) FUNGI IN FORAGE RHIZOSPHERES. This study aimed to determine the diversity of Arbuscular Mycorrhizal Fungi (AMF) in several kinds of hybrid forages Rhizospheres, either in grasses or legumes. Soil samples were taken from three different locations, consisted of: Mapanget (forages type: Leucaena leucocepala, Sorghum varieties numbu, Penicettum purpureum cv. Mott), Tateli (forages type: calothyrsus Calliandra, Gliricidia sepium) and Campus of UNSRAT, Manado (forage type: King grass). The soil samples which taken from forages rhizospheres were sieved using Brundrett method and then centrifuged.  Thereafter, isolation and identification of spore were carried out based on spore morphology character, involves: shape, size, color, hyphae attachment, and ornament. Extraction and identification of spores on six types of rhizosphere were found 34 different types of AMF spores in shape and color. In grass, it was found three types of spores, i.e.: Glomus, Acaulospora, and Sclerocystis, meanwhile in leguminous just one type of spore was found, i.e.: Glomus. The difference of rhizosphere in grass and leguminosae resulted in different types of spores, where Sclerocystis and Acaulospora are found in grasses, on the contrary Sclerocystis and Acaulospora are not found in leguminosae. Based on the number of spores of AMF, it seemed that Glomus types found to have the most number, while Sclerocystis and Acaulospora had the lowest number of spores found. Key words: Exploration, Arbuscular Mycorrhizal Fungi (AMF), Grass, Legume, Spores


1998 ◽  
Vol 29 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Marco A. Martins ◽  
Andre F. Cruz

An experiment under greenhouse conditions was carried out to evaluate the relative contribuition of arbuscular mycorrhizal fungi (AMF) in the process of nitrogen transfer from cowpea to maize plants, using the isotope 15N. Special pots divided in three sections (A, B and C), were constructed and a nylon mesh screen of two diameters: 40µm (which allowed the AMF hyphae to pass but not the plant roots) or 1µm (which acted as a barrier to AM hyphae and plant roots) was inserted between the sections B and C. Section A had 25.5 mg of N/kg using (15NH4)2SO4 as N source. Two cowpea seedlings inoculated with Rhizobium sp. were transplanted with their root systems divided between the sections A and B. Ten days later, 2 seeds of maize were sown into the section C which was inoculated with Glomus etunicatum. Thirty-five days after transplanting, the maize plants were harvested. AMF inoculation increased dry weight and 15N and P content of maize plant shoots. Direct transfer of 15N via AMF hyphae was 21.2%; indirect transfer of 15N mediated by AMF mycelium network, was 9.6%, and indirect transfer not mediated by AM mycelium network , was 69.2%.


Sign in / Sign up

Export Citation Format

Share Document