scholarly journals Combining artificial substrates, morphology and DNA metabarcoding for investigating macrozoobenthic communities in NW Iberia

2019 ◽  
Vol 6 ◽  
Author(s):  
Barbara Leite ◽  
Pedro Vieira ◽  
Jesus Troncoso ◽  
Filipe Costa
2021 ◽  
Vol 5 ◽  
Author(s):  
Barbara R. Leite ◽  
Pedro E. Vieira ◽  
Jesús S. Troncoso ◽  
Filipe O. Costa

DNA metabarcoding has great potential to improve marine biomonitoring programs by providing a rapid and accurate assessment of species composition in zoobenthic communities. However, some methodological improvements are still required, especially regarding failed detections, primers efficiency and incompleteness of databases. Here we assessed the efficiency of two different marker loci (COI and 18S) and three primer pairs in marine species detection through DNA metabarcoding of the macrozoobenthic communities colonizing three types of artificial substrates (slate, PVC and granite), sampled between 3 and 15 months of deployment. To accurately compare detection success between markers, we also compared the representativeness of the detected species in public databases and revised the reliability of the taxonomic assignments. Globally, we recorded extensive complementarity in the species detected by each marker, with 69% of the species exclusively detected by either 18S or COI. Individually, each of the three primer pairs recovered, at most, 52% of all species detected on the samples, showing also different abilities to amplify specific taxonomic groups. Most of the detected species have reliable reference sequences in their respective databases (82% for COI and 72% for 18S), meaning that when a species was detected by one marker and not by the other, it was most likely due to faulty amplification, and not by lack of matching sequences in the database. Overall, results showed the impact of marker and primer applied on species detection ability and indicated that, currently, if only a single marker or primer pair is employed in marine zoobenthos metabarcoding, a fair portion of the diversity may be overlooked.


Author(s):  
Yoshihisa AKAMATSU ◽  
Takayoshi TSUZUKI ◽  
Ryota YOKOYAMA ◽  
Yayoi FUNAHASHI ◽  
Munehiro OHTA ◽  
...  

Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Chapter 10 “Environmental DNA for functional diversity” discusses the potential of environmental DNA to assess functional diversity. It first focuses on DNA metabarcoding and discusses the extent to which this approach can be used and/or optimized to retrieve meaningful information on the functions of the target community. This knowledge usually involves coarsely defined functional groups (e.g., woody, leguminous, graminoid plants; shredders or decomposer soil organisms; pathogenicity or decomposition role of certain microorganisms). Chapter 10 then introduces metagenomics and metatranscriptomics approaches, their advantages, but also the challenges and solutions to appropriately sampling, sequencing these complex DNA/RNA populations. Chapter 10 finally presents several strategies and software to analyze metagenomes/metatranscriptomes, and discusses their pros and cons.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Environmental DNA (eDNA), i.e. DNA released in the environment by any living form, represents a formidable opportunity to gather high-throughput and standard information on the distribution or feeding habits of species. It has therefore great potential for applications in ecology and biodiversity management. However, this research field is fast-moving, involves different areas of expertise and currently lacks standard approaches, which calls for an up-to-date and comprehensive synthesis. Environmental DNA for biodiversity research and monitoring covers current methods based on eDNA, with a particular focus on “eDNA metabarcoding”. Intended for scientists and managers, it provides the background information to allow the design of sound experiments. It revisits all steps necessary to produce high-quality metabarcoding data such as sampling, metabarcode design, optimization of PCR and sequencing protocols, as well as analysis of large sequencing datasets. All these different steps are presented by discussing the potential and current challenges of eDNA-based approaches to infer parameters on biodiversity or ecological processes. The last chapters of this book review how DNA metabarcoding has been used so far to unravel novel patterns of diversity in space and time, to detect particular species, and to answer new ecological questions in various ecosystems and for various organisms. Environmental DNA for biodiversity research and monitoring constitutes an essential reading for all graduate students, researchers and practitioners who do not have a strong background in molecular genetics and who are willing to use eDNA approaches in ecology and biomonitoring.


2021 ◽  
Author(s):  
Liz Milla ◽  
Kale Sniderman ◽  
Rose Lines ◽  
Mahsa Mousavi‐Derazmahalleh ◽  
Francisco Encinas‐Viso

2021 ◽  
Author(s):  
José Luis Mena ◽  
Hiromi Yagui ◽  
Vania Tejeda ◽  
Emilio Bonifaz ◽  
Eva Bellemain ◽  
...  

Author(s):  
Eva Lena F. Estensmo ◽  
Sundy Maurice ◽  
Luis Morgado ◽  
Pedro M. Martin‐Sanchez ◽  
Inger Skrede ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Karoline Hermanns ◽  
Frédéric Mahé ◽  
Colomban de Vargas ◽  
...  

AbstractHeterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kinetoplastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans.


Sign in / Sign up

Export Citation Format

Share Document