scholarly journals Isotropic Diffusion Weighting Provides Insight on Diffusion Compartments in Human Brain White Matter In vivo

2016 ◽  
Vol 4 ◽  
Author(s):  
Dhital Bibek ◽  
Kellner Elias ◽  
Kiselev Valerij ◽  
Reisert Marco
2017 ◽  
Vol 13 (7S_Part_16) ◽  
pp. P794-P795
Author(s):  
Arman P. Kulkarni ◽  
Arnold M. Evia ◽  
Julie A. Schneider ◽  
David A. Bennett ◽  
Konstantinos Arfanakis

2019 ◽  
Vol 125 ◽  
pp. 198-206 ◽  
Author(s):  
Giacomo Bertolini ◽  
Emanuele La Corte ◽  
Domenico Aquino ◽  
Elena Greco ◽  
Zefferino Rossini ◽  
...  

Author(s):  
Maria A Di Biase ◽  
Andrew Zalesky ◽  
Suheyla Cetin-Karayumak ◽  
Yogesh Rathi ◽  
Jinglei Lv ◽  
...  

Abstract Introduction Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter. Methods All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls. Results Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = −3.56, P = .0004) and IL-12(p70) (t = −2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA. Conclusions We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.


1985 ◽  
Vol 44 (5) ◽  
pp. 1411-1418 ◽  
Author(s):  
Tony F. Cruz ◽  
Mario A. Moscarello

Author(s):  
Mohammadreza Ramzanpour ◽  
Mohammad Hosseini-Farid ◽  
Mariusz Ziejewski ◽  
Ghodrat Karami

Abstract Axons as microstructural constituent elements of brain white matter are highly oriented in extracellular matrix (ECM) in one direction. Therefore, it is possible to model the human brain white matter as a unidirectional fibrous composite material. A micromechanical finite element model of the brain white matter is developed to indirectly measure the brain white matter constituents’ properties including axon and ECM under tensile loading. Experimental tension test on corona radiata conducted by Budday et al. 2017 [1] is used in this study and one-term Ogden hyperelastic constitutive model is applied to characterize its behavior. By the application of genetic algorithm (GA) as a black box optimization method, the Ogden hyperelastic parameters of axon and ECM minimizing the error between numerical finite element simulation and experimental results are measured. Inverse analysis is conducted on the resultant optimized parameters shows high correlation of coefficient (>99%) between the numerical and experimental data which verifies the accuracy of the optimization procedure. The volume fraction of axons in porcine brain white matter is taken to be 52.7% and the stiffness ratio of axon to ECM is perceived to be 3.0. As these values are not accurately known for human brain white matter, we study the material properties of axon and ECM for different stiffness ratio and axon volume fraction values. The results of this study helps to better understand the micromechanical structure of the brain and micro-level injuries such as diffuse axonal injury.


Neuroreport ◽  
1993 ◽  
Vol 4 (7) ◽  
pp. 887-890 ◽  
Author(s):  
Denis Le Bihan ◽  
Robert Turner ◽  
Philippe Douek

Sign in / Sign up

Export Citation Format

Share Document