scholarly journals The Rhizosphere Talk Show: The Rhizobia on Stage

2020 ◽  
Vol 2 ◽  
Author(s):  
Alice Checcucci ◽  
Marta Marchetti

From bacterial quorum sensing to the signals of bees, communication is the basis of biotic interactions. Frequently, more than two organisms can take part in the speeches, resulting in a complex network of cross-talks. Recent advances in plant-microbe interactions research have shown that communication, both inter-kingdom and intra-kingdom, is shaped by a broad spectrum of factors. In this context, the rhizosphere (i.e., the soil close to the root surface) provides a specific microhabitat where complex interactions occur. The complex environment that makes up the rhizosphere can select for certain microbial populations, which are adapted to this unique niche. Among them, rhizobia have emerged as an important component of the rhizospheric microbiome. The aim of this review is to explore the components of such a rhizospheric Talk Show in the frame of the rhizobium-legume interactions. This symbiosis is a complex process that involves several signals that can be shaped by plant rhizospheric exudates and microbiome composition. The relationship established by rhizobia with other rhizospheric organisms, together with the influence of the environmental factors, results in their beneficial role on host plant health. Here, we resume research accounting strategies, molecules, and organisms that influence the place of rhizobia in the rhizosphere. The focus is on the most recent approaches for the study and subsequent exploitation of the diversity of the organisms. Indeed, the study of plant-microbes communication and evolution is fundamental to develop highly efficient inoculants able to reduce the use of fertilizers in agriculture.

2019 ◽  
Author(s):  
Diana J. Rennison ◽  
Seth M. Rudman ◽  
Dolph Schluter

AbstractThe processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet, relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we utilize three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host-microbe interactions might play an important role in host adaptation and diversification.


Leonardo ◽  
2011 ◽  
Vol 44 (3) ◽  
pp. 264-265
Author(s):  
Anna Dumitriu ◽  
Blay Whitby

The transdisciplinary art project Cybernetic Bacteria 2.0 brings together an artist, a philosopher, a microbiologist, an artificial life programmer and an interactive media specialist, to investigate the relationship of the emerging science of bacterial communication to our own digital communications networks, looking in particular at ‘packet data’ and bacterial quorum sensing. The project seeks to reflect the complexity of communication taking place at a microscopic level in comparison with human communication technologies such as the Internet.


2021 ◽  
Vol 22 (21) ◽  
pp. 11948
Author(s):  
Alla Usyskin-Tonne ◽  
Yitzhak Hadar ◽  
Dror Minz

Root selection of their associated microbiome composition and activities is determined by the plant’s developmental stage and distance from the root. Total gene abundance, structure and functions of root-associated and rhizospheric microbiomes were studied throughout wheat growth season under field conditions. On the root surface, abundance of the well-known wheat colonizers Proteobacteria and Actinobacteria decreased and increased, respectively, during spike formation, whereas abundance of Bacteroidetes was independent of spike formation. Metagenomic analysis combined with functional co-occurrence networks revealed a significant impact of plant developmental stage on its microbiome during the transition from vegetative growth to spike formation. For example, gene functions related to biofilm and sensorial movement, antibiotic production and resistance and carbons and amino acids and their transporters. Genes associated with these functions were also in higher abundance in root vs. the rhizosphere microbiome. We propose that abundance of transporter-encoding genes related to carbon and amino acid, may mirror the availability and utilization of root exudates. Genes related to antibiotic resistance mechanisms were abundant during vegetative growth, while after spike formation, genes related to the biosynthesis of various antibiotics were enriched. This observation suggests that during root colonization and biofilm formation, bacteria cope with competitor’s antibiotics, whereas in the mature biofilm stage, they invest in inhibiting new colonizers. Additionally, there is higher abundance of genes related to denitrification in rhizosphere compared to root-associated microbiome during wheat growth, possibly due to competition with the plant over nitrogen in the root vicinity. We demonstrated functional and phylogenetic division in wheat root zone microbiome in both time and space: pre- and post-spike formation, and root-associated vs. rhizospheric niches. These findings shed light on the dynamics of plant–microbe and microbe–microbe interactions in the developing root zone.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20191911 ◽  
Author(s):  
Diana J. Rennison ◽  
Seth M. Rudman ◽  
Dolph Schluter

The processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from the repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we use three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host–microbe interactions might play an important role in host adaptation and diversification.


Sign in / Sign up

Export Citation Format

Share Document