scholarly journals In Quest of Nitrogen Use-Efficient Rice Genotypes for Drought-Prone Rainfed Ecosystems

2021 ◽  
Vol 2 ◽  
Author(s):  
Biswajit Karmakar ◽  
Stephan M. Haefele ◽  
Amelia Henry ◽  
Md Humayun Kabir ◽  
Aminul Islam ◽  
...  

Nitrogen (N) use efficiency in rainfed agriculture is generally low because of poor management and unavailability of suitable rice genotypes. There is a need to select rice genotypes with high N use efficiency for these specific environments, which was investigated at the Bangladesh Rice Research Institute, Regional Station, Rajshahi, in two successive years. The performance of six rice genotypes, IR7437170-1-1, BR7873-5*(NIL)-51-HR6, IR83377-B-B-93-3, International Rice Research Institute (IRRI) 123, IR83381-B-B-6-1, and Binadhan-7, were tested under four N rates (0, 55, 83, and 110 kg N ha−1) in a strip-plot design. Grain yields generally increased up to 83 kg N ha−1 and declined thereafter. Depending on N rates, mean grain yields increased by 35–45% compared to the control (N0). However, the grain yields of IR83377-B-B-93-3, IRRI 123, and Binadhan-7 increased up to 110 kg N ha−1. N uptake and its use efficiencies were the highest in IR83377-B-B-93-3, which was at par with those in IRRI 123. Bangladesh Rice Research Institute (BRRI) dhan56 and Binadhan-7 showed intermediate performance, while BRRI dhan57 and IR83381-B-B-6-1 showed lower N uptake and N efficiencies. Between 16.5 and 19.2 kg N uptake was required to produce 1 ton of paddy. The genotypes IR83381-B-B-93-3 and IRRI 123 were the most N use efficient irrespective of N rates, but BRRI dhan57 and IR87781-B-B-6-1 were observed to be inefficient genotypes, while BRRI dhan56 and Binadhan-7 were intermediate. Thus, this study indicates the need to test existing and new germplasm for optimal N rates and their NUE, especially in rainfed environments where optimized resource use is essential for higher yields and increased farmers' income.

2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


2016 ◽  
Vol 96 (3) ◽  
pp. 392-403 ◽  
Author(s):  
Dilip K. Biswas ◽  
Bao-Luo Ma

A two-year (2010–2011) field experiment was undertaken to examine the effect of nitrogen (N) rate (0, 100, 150, and 200 kg N ha−1) and N source (urea, calcium ammonium nitrate; ammonium sulphate) on canopy reflectance, chlorophyll pigments, photosynthesis, yield, grain quality, and N-use efficiency in corn. However, the physiological observations were made only in 2011. We found that stover biomass was unaffected by higher N rate beyond 150 kg N ha−1 in both years. Higher N rates did not provide a yield advantage as compared to 150 kg N ha−1 in 2010, but the highest grain yield was produced with 200 kg N ha−1 in 2011. The higher grain yield by N application was attributed to a greater kernel size in both years. Corn stover [N] was found to increase with increasing N rates in both years. Kernel [N] only responded to the high N rate in 2010. There was no change in the kernel density as affected by N rate in both years. An increased N addition resulted in a decrease in both N-uptake efficiency and agronomic-N use efficiency in both years. There was an inconsistent effect of N source on yield and N use efficiency indices in the corn over two years.


1996 ◽  
Vol 5 (3-4) ◽  
pp. 247-257 ◽  
Author(s):  
F.X. Maidl ◽  
A. Panse ◽  
J. Dennert ◽  
R. Ruser ◽  
G. Fischbeck

2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


2006 ◽  
Vol 290 (1-2) ◽  
pp. 115-126 ◽  
Author(s):  
Zhenan Hou ◽  
Pinfang Li ◽  
Baoguo Li ◽  
Jiang Gong ◽  
Yanna Wang

2001 ◽  
Vol 36 (5) ◽  
pp. 757-764 ◽  
Author(s):  
Luís Sangoi ◽  
Márcio Ender ◽  
Altamir Frederico Guidolin ◽  
Milton Luiz de Almeida ◽  
Valmor Antônio Konflanz

Genetic selection of maize hybrids is often conducted using high N rates during the breeding cycle. This procedure may either lead to the release of genotypes that present nitrogen luxury consumption or require a stronger N input to accomplish their yield potential. This work was carried out to evaluate the effects of N rates on grain yield and N use efficiency of hybrids cultivated in different decades in Southern Brazil. The trial was performed in Lages, Santa Catarina State. A split plot design was used. Hybrids Ag 12, Ag 28, Ag 303 and Ag 9012, released during the 60's, 70's, 80's and 90's, respectively, were evaluated in the main plots. Nitrogen rates equivalent to 0, 50, 100 and 200 kg ha-1 were side-dressed in the split-plots when each hybrid had six fully expanded leaves. Modern-day hybrid Ag 9012 had higher grain yield than hybrids of earlier eras, regardless of N rates. Under high doses of N, the older hybrids Ag 12 and Ag 28 took up more N and presented higher values of shoot dry matter at flowering than Ag 9012. Nonetheless, they set less grains per ear which contributed to decrease their grain yield and N use efficiency.


2008 ◽  
Vol 8 ◽  
pp. 394-399 ◽  
Author(s):  
Osumanu H. Ahmed ◽  
Aminuddin Hussin ◽  
Husni M. H. Ahmad ◽  
Anuar A. Rahim ◽  
Nik Muhamad Abd. Majid

Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.


2016 ◽  
Vol 67 (11) ◽  
pp. 1158 ◽  
Author(s):  
Rupinder Kaur ◽  
Seema Bedi ◽  
Gulshan Mahajan ◽  
Gurpreet Kaur ◽  
Bhagirath Singh Chauhan

To achieve high productivity of labour and water in rice cropping, farmers in South Asia have recently shown more interest in dry direct-seeded rice (DSR). An understanding of physiological and biochemical traits associated with high grain yield and efficiency of nitrogen (N) use is important to the development of genotypes for DSR. We investigated this issue with rice genotypes adapted to DSR in response to N rates. A 2-year study was conducted in a factorial randomised complete block design with eight genotypes and two N rates (75 and 150 kg N ha–1). Almost all of the physiological and biochemical traits studied (e.g. plant height, chlorophyll content, panicle weight, soluble sugars, starch) in DSR improved with increasing N from 75 to 150 kg ha–1, resulting in a 6% increase in yield at 150 kg N ha–1 relative to 75 kg N ha–1. Partial factor productivity of N was highest for the genotype IET-23455 (72.4 kg kg–1) and lowest for the genotype AAUDR (37.4 kg kg–1). Our results suggest that genotypes such as IET-23455 can maintain grain yield at low N rates as N-efficient genotypes. The greater biochemical activity (nitrate reductase and glutamine synthetase, sugar, protein and proline) and higher photosynthetic N-use efficiency at low N rates could be used in selection for N-efficient rice genotypes for DSR.


1994 ◽  
Vol 74 (3) ◽  
pp. 479-484 ◽  
Author(s):  
D. E. McCullough ◽  
A. Aguilera ◽  
M. Tollenaar

An old maize (Zea mays L.) hybrid (Pride 5) has been shown to be less tolerant to N stress than a new maize hybrid (Pioneer 3902) during early phases of development. The objective of this study was to quantify the response of the two hybids to N supply in terms of N uptake, N partitioning, and photosynthetic N–use efficiency. Plants were grown under controlled-environment conditions until the 12-leaf stage at three levels of N supply (i.e., 15 mM N, 2.5 mM N, and 0.5 mM N) and were sampled at the 4-, 8-, and 12-leaf stages. Rates of N uptake per unit ground area were higher for Pioneer 3902 than for Pride 5 under maximum N stress during the 8- to 12-leaf phase, but rates were higher for Pride 5 at high N. Rates of N uptake per unit root weight were higher for Pioneer 3902 than for Pride 5 under both medium and low N supply. The old hybrid (Pride 5) partitioned more dry matter and N to leaves than the new hybrid under low N supply, but leaf N per unit leaf area was higher for the new hybrid. The new hybrid (Pioneer 3902) maintained greater rates of leaf photosynthesis per unit leaf N regardless of N supply. Consequently, results indicate that the higher N-use efficiency of Pioneer 3902 under low N supply is associated with higher N uptake and a higher leaf N per unit leaf area. Key words:Zea mays L., dry matter accumulation, photosynthesis, leaf N


Jurnal Agro ◽  
2022 ◽  
Vol 8 (2) ◽  
pp. 262-273
Author(s):  
Risqa Naila Khusna Syarifah ◽  
Zulfa Ulinuha ◽  
Purwanto Purwanto

Pemupukan N pada padi hibrida menjadi krusial mengingat varietas padi hibrida sangat responsif, sehingga harus diketahui dosis yang tepat untuk menghasilkan produksi yang tinggi. Penelitian ini bertujuan untuk mengkaji pengaruh dosis N terhadap serapan N, efisiensi penggunaan N, dan hasil padi hibrida. Penelitian menggunakan Rancangan Acak Kelompok yang diulang tiga kali. Faktor pertama adalah varietas padi hibrida yang terdiri dari Varietas Mapan P05, Varietas SL-8 SHS Sterling, dan Varietas Intani 602. Faktor kedua adalah dosis pemupukan N yang terdiri dari kontrol tanpa pemupukan N, dosis N 100 kg ha-1, dan dosis N 200 kg ha-1. Terdapat respon yang beragam antar varietas padi hibrida terhadap taraf pemupukan N, Serapan N, efisiensi penggunaan N tertinggi yang dihasilkan oleh varietas Intani 602 masing-masing sebesar 138,57 %, dan 36,13%. Serapan N tanaman padi tertinggi dicapai pada dosis N 100 kg ha-1, dan efisiensi penggunaan N tertinggi pada dosis N 200 kg ha-1. Hasil gabah tertinggi dicapai pada varietas Mapan P05 sebesar 7,42 t ha-1, dan dosis pemupukan N 100 kg ha-1 memberikan hasil tertinggi sebesar 7,47 t ha-1. Implikasi dari penelitian ini bahwa dosis nitrogen 100 kg ha-1 dapat menjadi acuan sebagai dosis pemupukan N varietas padi hibrida di Indonesia. Hybrid rice is responsive to nitrogen, so it’s necessary to find the optimum dose to optimize the production. The  aim of this research was to examine the effect of nitrogen on N uptake, N use efficiency, and yield of hybrid rice. This study used a randomized block design with three replications. The first factor consisted of the  Mapan P05 variety, the SL-8 SHS Sterling variety, and Intani 602 variety. The second factor was Nitrogen dosage consisted of control, 100 kg ha-1, and 200 kg ha-1. There were various responses among hybrid rice varieties to the level of fertilization. The highest N uptake and N use efficiency was achieved in the Intani 602 variety at 138.57% and 36.13%, respectively. The highest N uptake was achieved at 100 kg ha-1 of N, and the highest N use efficiency was at 200 kg ha-1. The highest yield was achieved in the Mapan P05 variety (7.42 t ha-1), and the dose of N at 100 kg ha-1 gave the highest yield (7.47 t ha-1). The implication of this research is that the nitrogen dose of 100 kg ha-1 can be used as a reference for hybrid rice varieties fertilizer in Indonesia.


Sign in / Sign up

Export Citation Format

Share Document