scholarly journals Pengaruh pemupukan N terhadap serapan dan efisiensi penggunaan N, serta hasil padi hibrida

Jurnal Agro ◽  
2022 ◽  
Vol 8 (2) ◽  
pp. 262-273
Author(s):  
Risqa Naila Khusna Syarifah ◽  
Zulfa Ulinuha ◽  
Purwanto Purwanto

Pemupukan N pada padi hibrida menjadi krusial mengingat varietas padi hibrida sangat responsif, sehingga harus diketahui dosis yang tepat untuk menghasilkan produksi yang tinggi. Penelitian ini bertujuan untuk mengkaji pengaruh dosis N terhadap serapan N, efisiensi penggunaan N, dan hasil padi hibrida. Penelitian menggunakan Rancangan Acak Kelompok yang diulang tiga kali. Faktor pertama adalah varietas padi hibrida yang terdiri dari Varietas Mapan P05, Varietas SL-8 SHS Sterling, dan Varietas Intani 602. Faktor kedua adalah dosis pemupukan N yang terdiri dari kontrol tanpa pemupukan N, dosis N 100 kg ha-1, dan dosis N 200 kg ha-1. Terdapat respon yang beragam antar varietas padi hibrida terhadap taraf pemupukan N, Serapan N, efisiensi penggunaan N tertinggi yang dihasilkan oleh varietas Intani 602 masing-masing sebesar 138,57 %, dan 36,13%. Serapan N tanaman padi tertinggi dicapai pada dosis N 100 kg ha-1, dan efisiensi penggunaan N tertinggi pada dosis N 200 kg ha-1. Hasil gabah tertinggi dicapai pada varietas Mapan P05 sebesar 7,42 t ha-1, dan dosis pemupukan N 100 kg ha-1 memberikan hasil tertinggi sebesar 7,47 t ha-1. Implikasi dari penelitian ini bahwa dosis nitrogen 100 kg ha-1 dapat menjadi acuan sebagai dosis pemupukan N varietas padi hibrida di Indonesia. Hybrid rice is responsive to nitrogen, so it’s necessary to find the optimum dose to optimize the production. The  aim of this research was to examine the effect of nitrogen on N uptake, N use efficiency, and yield of hybrid rice. This study used a randomized block design with three replications. The first factor consisted of the  Mapan P05 variety, the SL-8 SHS Sterling variety, and Intani 602 variety. The second factor was Nitrogen dosage consisted of control, 100 kg ha-1, and 200 kg ha-1. There were various responses among hybrid rice varieties to the level of fertilization. The highest N uptake and N use efficiency was achieved in the Intani 602 variety at 138.57% and 36.13%, respectively. The highest N uptake was achieved at 100 kg ha-1 of N, and the highest N use efficiency was at 200 kg ha-1. The highest yield was achieved in the Mapan P05 variety (7.42 t ha-1), and the dose of N at 100 kg ha-1 gave the highest yield (7.47 t ha-1). The implication of this research is that the nitrogen dose of 100 kg ha-1 can be used as a reference for hybrid rice varieties fertilizer in Indonesia.

2020 ◽  
Vol 15 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Abdur Rehim ◽  
Maryam Khan ◽  
Muhammad Imran ◽  
Muhammad Amjad Bashir ◽  
Sami Ul-Allah ◽  
...  

Lower nitrogen use efficiency (NUE) is a major yield limiting factor in semi-arid regions due to poor organic contents of the soils. There is a close relationship between soil organic matter and NUE of fertilizers. Therefore, this study was conducted to assess the effect of sole N fertilizer and its combinations with organic amendments (farm manure combinations) on N use efficiency and crop productivity. For this purpose, a two-year field study was conducted to access the influence of integrated use of synthetic N fertilizer (urea) and farm manure on N use efficiency and wheat productivity. Treatments include i.e. Control, 100% N by Urea + 0%N by farm manure (FM), 75% N by Urea + 25 % N by FM, 50% N by Urea + 50% N by FM, 25% N by Urea + 75% N by FM, 0% N by Urea + 100% N by FM arranged in a triplicate randomized complete block design having recommended N rate of 150 kg ha–1. The results revealed that the treatment having 75% Urea and 25% FM followed by 50% Urea and 50% FM showed better results in term of wheat growth and yield. There was 98% increase in N uptake of wheat grains and 200% increase in NUE by the application of 75% urea+25% FM relative to sole application of urea. This study suggests use of 3:1 ratio of urea and FM for maximum NUE and sustainable wheat production.


2006 ◽  
Vol 144 (1) ◽  
pp. 69-83 ◽  
Author(s):  
DILLIP KUMAR SWAIN ◽  
BURLA CHANDRA BHASKAR ◽  
PRAMILA KRISHNAN ◽  
KURKURI SRINIVASA RAO ◽  
SANGRAM KESHARI NAYAK ◽  
...  

Field experiments were conducted at the village Kasiadihi, Dhenkanal district, Orissa, India during wet seasons 2001, 2002 and 2003 under non water-stressed conditions (0–25 cm standing water) to assess variability in N uptake and utilization by medium and late duration rice varieties. The N rates were 0, 40, 80 and 120 kg N/ha applied as urea in four equal splits at transplanting, active tiller initiation, panicle initiation and flowering stages. The grain yield response was up to 80 kg N/ha. The optimum grain yield attainable by the efficient medium duration varieties was 4·5 t/ha. The N efficient late duration varieties produced optimum grain yield of 5·8 t/ha. The relationship for total dry matter and grain yield production between N fertilized (40, 80 and 120 kg N/ha) and non-fertilized treatments were all significant, suggesting cultivar selection under optimum N fertilized conditions. The difference in optimum yield of the medium and late duration varieties was due to the differences in the amount of N uptake and its use efficiency by the plant for grain production. There was a curvilinear relationship between grain yield and N use efficiency for grain production. The relationship between N use efficiency for grain production and N contents of leaf, stem and grain at maturity was quadratic. The optimum plant N use efficiency of medium duration varieties was 49 kg grain/kg N uptake, achieved with leaf, stem and grain N contents of 10, 8 and 14 g/kg, respectively, at maturity. For late duration varieties, the optimum plant N use efficiency was 68 kg grain/kg N uptake and it was maintained with leaf and stem N content of 4·0 g/kg each and grain N content of 9·0 g/kg at maturity. The N content in plant organs could be the selection guide used to obtain efficient rice varieties.


Author(s):  
Juliane S. P. Costa ◽  
Rubia D. Mantai ◽  
José A. G. da Silva ◽  
Osmar B. Scremin ◽  
Emilio G. Arenhardt ◽  
...  

ABSTRACT Single or split nitrogen (N) supply can maximize the expression of wheat yield indicators. The objective of the study was to evaluate the greater N use efficiency on wheat yield indicators by the single and split N supply under favorable and unfavorable year conditions to the crop in succession system of high and reduced residual N release. The study was conducted in 2014 and 2015, in a randomized complete block design with four replicates in a 4 x 3 factorial, for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and supply forms [full dose (100%) in the phenological stage V3 (third expanded leaf); split dose (70 and 30%) in the phenological stages V3/V6 (third and sixth expanded leaves, respectively) and; split dose (70 and 30%) in the phenological stages V3/R1 (third expanded leaf and early grain filling)], respectively, in soybean/wheat and maize/wheat cultivation systems. The highest N use efficiency for wheat yield was obtained with the single dose supply in favorable year of temperature and rainfall and with the split dose in the V3/V6 stages in unfavorable year, regardless of the succession system of high and reduced residual N release.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1241
Author(s):  
Peter Omara ◽  
Lawrence Aula ◽  
Fikayo B. Oyebiyi ◽  
Elizabeth M. Eickhoff ◽  
Jonathan Carpenter ◽  
...  

Biochar (B) has shown promise in improving crop productivity. However, its interaction with inorganic nitrogen (N) in temperate soils is not well-studied. The objective of this paper was to compare the effect of fertilizer N-biochar-combinations (NBC) and N fertilizer (NF) on maize (Zea mays L.) grain yield, N uptake, and N use efficiency (NUE). Trials were conducted in 2018 and 2019 at Efaw and Lake Carl Blackwell (LCB) in Oklahoma, USA. A randomized complete block design with three replications and ten treatments consisting of 50, 100, and 150 kg N ha−1 and 5, 10, and 15 Mg B ha−1 was used. At LCB, yield, N uptake, and NUE under NBC increased by 25%, 28%, and 46%, respectively compared to NF. At Efaw, yield, N uptake, and NUE decreased under NBC by 5%, 7%, and 19%, respectively, compared to NF. Generally, results showed a significant response to NBC at ≥10 Mg B ha−1. While results were inconsistent across locations, the significant response to NBC was evident at LCB with sandy loam soil but not Efaw with silty clay loam. Biochar application with inorganic N could improve N use and the yield of maize cultivated on sandy soils with poor physical and chemical properties.


2006 ◽  
Vol 290 (1-2) ◽  
pp. 115-126 ◽  
Author(s):  
Zhenan Hou ◽  
Pinfang Li ◽  
Baoguo Li ◽  
Jiang Gong ◽  
Yanna Wang

2008 ◽  
Vol 8 ◽  
pp. 394-399 ◽  
Author(s):  
Osumanu H. Ahmed ◽  
Aminuddin Hussin ◽  
Husni M. H. Ahmad ◽  
Anuar A. Rahim ◽  
Nik Muhamad Abd. Majid

Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.


1994 ◽  
Vol 74 (3) ◽  
pp. 479-484 ◽  
Author(s):  
D. E. McCullough ◽  
A. Aguilera ◽  
M. Tollenaar

An old maize (Zea mays L.) hybrid (Pride 5) has been shown to be less tolerant to N stress than a new maize hybrid (Pioneer 3902) during early phases of development. The objective of this study was to quantify the response of the two hybids to N supply in terms of N uptake, N partitioning, and photosynthetic N–use efficiency. Plants were grown under controlled-environment conditions until the 12-leaf stage at three levels of N supply (i.e., 15 mM N, 2.5 mM N, and 0.5 mM N) and were sampled at the 4-, 8-, and 12-leaf stages. Rates of N uptake per unit ground area were higher for Pioneer 3902 than for Pride 5 under maximum N stress during the 8- to 12-leaf phase, but rates were higher for Pride 5 at high N. Rates of N uptake per unit root weight were higher for Pioneer 3902 than for Pride 5 under both medium and low N supply. The old hybrid (Pride 5) partitioned more dry matter and N to leaves than the new hybrid under low N supply, but leaf N per unit leaf area was higher for the new hybrid. The new hybrid (Pioneer 3902) maintained greater rates of leaf photosynthesis per unit leaf N regardless of N supply. Consequently, results indicate that the higher N-use efficiency of Pioneer 3902 under low N supply is associated with higher N uptake and a higher leaf N per unit leaf area. Key words:Zea mays L., dry matter accumulation, photosynthesis, leaf N


2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


Author(s):  
Tchister Morrel Ebissa ◽  
Bo Yang ◽  
Yuanqing Guan ◽  
Bingchang Tan ◽  
Peizhen Chen ◽  
...  

A field experiment was conducted in Ninghe, Tianjin, China, using 15N isotope method to evaluate the application of organic fertilizer on N distribution patterns of labelled and unlabeled N fertilizer, ammonium sulfate -15N uptake by rice, N use efficiency (NUE), and the fate of (15NH4)2SO4 applied. The experiment included eight treatments: CK-N (control + no-duck), CK-D (control + ducks), CF-N (chemical fertilizer + no-ducks), CF-D (chemical fertilizer + ducks), CM-N (chemical fertilizer + organic fertilizer + no-ducks), CM-D (chemical fertilizer + organic fertilizer + ducks), CD-N (chemical fertilizer 30% off + organic fertilizer + no-ducks), and CD-D (chemical fertilizer 30% off + organic fertilizer + ducks). The results showed that the application of organic fertilizer whether CM or CD significantly increased N and P concentrations over control (CK) and chemical fertilizer (CF). Moreover, no-significant differences were found in 15N fresh grain and husk concentration. Both organs ranged of 14.2-14.4 g kg-1 and 6.2-6.3 g kg-1, respectively. N derived from the fertilizer and soil significantly affected fresh grain compared to fresh husk. However, N uptake and N use efficiency did not show any differences. We concluded that organic fertilizer has a significant influence on rice growth and promote crop productivity.


Sign in / Sign up

Export Citation Format

Share Document