Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata

2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.

2016 ◽  
Vol 96 (3) ◽  
pp. 392-403 ◽  
Author(s):  
Dilip K. Biswas ◽  
Bao-Luo Ma

A two-year (2010–2011) field experiment was undertaken to examine the effect of nitrogen (N) rate (0, 100, 150, and 200 kg N ha−1) and N source (urea, calcium ammonium nitrate; ammonium sulphate) on canopy reflectance, chlorophyll pigments, photosynthesis, yield, grain quality, and N-use efficiency in corn. However, the physiological observations were made only in 2011. We found that stover biomass was unaffected by higher N rate beyond 150 kg N ha−1 in both years. Higher N rates did not provide a yield advantage as compared to 150 kg N ha−1 in 2010, but the highest grain yield was produced with 200 kg N ha−1 in 2011. The higher grain yield by N application was attributed to a greater kernel size in both years. Corn stover [N] was found to increase with increasing N rates in both years. Kernel [N] only responded to the high N rate in 2010. There was no change in the kernel density as affected by N rate in both years. An increased N addition resulted in a decrease in both N-uptake efficiency and agronomic-N use efficiency in both years. There was an inconsistent effect of N source on yield and N use efficiency indices in the corn over two years.


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 214-217 ◽  
Author(s):  
S.B. Phillips ◽  
J.G. Warren ◽  
G.L. Mullins

Previous work suggests that `Beauregard' sweetpotato [Ipomoea batatas (L.) Lam.] has a much lower N requirement than other common cultivars. Over the past 10 years, `Beauregard' has become the premier sweetpotato cultivar grown in Virginia; however, N fertilizer recommendations have not been reassessed to consider the potentially lower N requirement of `Beauregard'. The objectives of this study were to evaluate the effects of N rate and application timing on root yield, quality, and N use efficiency for `Beauregard' sweetpotato production in Virginia. A field study was conducted each year from 2000 to 2002 at the Eastern Shore Agricultural Research and Extension Center, Painter, Va. Nitrogen fertilizer was applied at rates of 28, 56, and 84 kg·ha-1 either before transplanting, 2 to 3 weeks after transplanting (WAT), or 4 to 5 WAT. A check treatment that received no N fertilizer was also included. Optimum N rates varied annually; under normal precipitation, root yield was greatest at the 28-kg·ha-1 rate, while 56 kg·ha-1 was required for maximum yield in wet conditions. Of note is that this range of rates is considerably lower than the current N recommendation for Virginia sweetpotato production (56 to 84 kg·ha-1). Delaying N application until 2 to 3 WAT further increased marketable root yield compared with applying N before transplanting or 4 to 5 WAT. Crude protein and N uptake increased with increasing N rate up to 84 kg·ha-1; however, N use efficiency was highest (67%) when 28 kg·ha-1 was applied 2 to 3 WAT.


2021 ◽  
Vol 2 ◽  
Author(s):  
Biswajit Karmakar ◽  
Stephan M. Haefele ◽  
Amelia Henry ◽  
Md Humayun Kabir ◽  
Aminul Islam ◽  
...  

Nitrogen (N) use efficiency in rainfed agriculture is generally low because of poor management and unavailability of suitable rice genotypes. There is a need to select rice genotypes with high N use efficiency for these specific environments, which was investigated at the Bangladesh Rice Research Institute, Regional Station, Rajshahi, in two successive years. The performance of six rice genotypes, IR7437170-1-1, BR7873-5*(NIL)-51-HR6, IR83377-B-B-93-3, International Rice Research Institute (IRRI) 123, IR83381-B-B-6-1, and Binadhan-7, were tested under four N rates (0, 55, 83, and 110 kg N ha−1) in a strip-plot design. Grain yields generally increased up to 83 kg N ha−1 and declined thereafter. Depending on N rates, mean grain yields increased by 35–45% compared to the control (N0). However, the grain yields of IR83377-B-B-93-3, IRRI 123, and Binadhan-7 increased up to 110 kg N ha−1. N uptake and its use efficiencies were the highest in IR83377-B-B-93-3, which was at par with those in IRRI 123. Bangladesh Rice Research Institute (BRRI) dhan56 and Binadhan-7 showed intermediate performance, while BRRI dhan57 and IR83381-B-B-6-1 showed lower N uptake and N efficiencies. Between 16.5 and 19.2 kg N uptake was required to produce 1 ton of paddy. The genotypes IR83381-B-B-93-3 and IRRI 123 were the most N use efficient irrespective of N rates, but BRRI dhan57 and IR87781-B-B-6-1 were observed to be inefficient genotypes, while BRRI dhan56 and Binadhan-7 were intermediate. Thus, this study indicates the need to test existing and new germplasm for optimal N rates and their NUE, especially in rainfed environments where optimized resource use is essential for higher yields and increased farmers' income.


2018 ◽  
pp. 303-309
Author(s):  
Reza Moradi Talebbeigi ◽  
Seyed Abdolreza Kazemeini ◽  
Hossein Ghadiri ◽  
Mohsen Edalat

The effects of nitrogen (N) on crop yields have historically been assessed with field trials, but selection and use of the best sources and optimal timing N applications have a significant role in realizing the maximum potential of oilseeds quality and quantity. This study was conducted to determine the combine effects of N sources [ammonium nitrate (AN), ammonium sulphate (AS), sulphur coated urea (SCU), and urea (U)] and split N fertilisation [(1/4,3/4,0), (1/3,1/3,1/3), (1/2,1/2,0), and (1/3,2/3,0)] on safflower (Carthamus tinctorius L.) some growth characters, yield and seed quality, and N use efficiency based on a split plot design with three replications at the experimental research station, Shiraz University in 2015 and 2016. The highest safflower dry matter (5140.93 kg ha–1), seed yield (3303.52 kg ha–1) and protein yield (694.95 kg ha–1) were achieved with the application of AN fertiliser in a split pattern of 1/2,1/2,0 (applying half of the N at sowing time and the rest at stem elongation), while the highest oil yield (753.09 kg ha– 1) was observed by U fertiliser and similar split pattern. Applying AN fertiliser and split patterns of 1/3,2/3,0 (applying one third of the N at sowing and two thirds of the N at stem elongation) and 1/4,3/4,0 (applying one quarter of the N at sowing and three quarters at stem elongation) maximised safflower N uptake efficiency (NUpE) (0.78 kg kg–1). However, the highest N utilisation efficiency (NUtE) (43.70 kg kg–1) was obtained when AN fertiliser in a split pattern of 1/2,1/2,0 was applied. On the contrary, applying AS and SCU fertilisers was less effective on safflower performance by all split patterns. It is concluded that applying AN fertiliser in a split pattern of 1/3,2/3,0 and or U fertiliser in a split pattern of 1/2,1/2,0 not only enhanced safflower growth, yield and seed quality improved, but also increased the N use efficiency of safflower.


1998 ◽  
Vol 130 (2) ◽  
pp. 165-172 ◽  
Author(s):  
K. SIELING ◽  
H. SCHRÖDER ◽  
H. HANUS

In NW Europe, autumn-grown oilseed rape normally receives nitrogen (N) in autumn as seedbed N and in the spring as a split application at the beginning of growth and at stem elongation. In the growing seasons 1990/91 to 1992/93, the effects of slurry and mineral N fertilization on yield, N uptake by the seed and apparent N-use efficiency (NUE) by oilseed rape (Brassica napus) were investigated in a factorial field experiment at Hohenschulen Experimental Station near Kiel, NW Germany. The crop rotation was oilseed rape–winter wheat–winter barley, and soil tillage (conservation tillage without ploughing, conventional tillage), application of pig slurry (none, autumn, spring, autumn+spring) and mineral N fertilization (0 to 200 kg N ha−1) were all varied. Each year, the treatments were applied to all three crops of the rotation and were located on the same plots.Between the years, average seed yield ranged from 3·04 to 3·78 t ha−1, while the corresponding N uptake by the seed varied from 107 to 131 kg N ha−1. Slurry application in spring increased the seed yield and N uptake by the seed in all years, whereas the effect of autumn slurry alone or in combination with spring slurry was negligible. Mineral N fertilizer increased seed yield and N uptake by the seeds except in 1991/92, when N amounts exceeded 160 kg N ha−1. No significant slurry×mineral N interaction occurred. Apparent NUE of mineral N was larger than that of slurry N, but decreased with increasing mineral fertilizer N rates. Only 5% of the autumn slurry N was apparently utilized by the seeds, compared with 24% of the spring slurry N.Despite its ability to take up substantial quantities of N before the winter, oilseed rape utilized very little autumn slurry N for seed production. To minimize environmental impacts, slurry should be applied in the spring, when plants are more able to use N for yield formation, even if NUE of slurry N is lower than that of mineral N. However, since NUE changes with the amount of applied N, it is difficult to find the best combination of slurry and mineral N fertilization to avoid negative environmental effects.


1996 ◽  
Vol 5 (3-4) ◽  
pp. 247-257 ◽  
Author(s):  
F.X. Maidl ◽  
A. Panse ◽  
J. Dennert ◽  
R. Ruser ◽  
G. Fischbeck

2020 ◽  
Vol 15 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Abdur Rehim ◽  
Maryam Khan ◽  
Muhammad Imran ◽  
Muhammad Amjad Bashir ◽  
Sami Ul-Allah ◽  
...  

Lower nitrogen use efficiency (NUE) is a major yield limiting factor in semi-arid regions due to poor organic contents of the soils. There is a close relationship between soil organic matter and NUE of fertilizers. Therefore, this study was conducted to assess the effect of sole N fertilizer and its combinations with organic amendments (farm manure combinations) on N use efficiency and crop productivity. For this purpose, a two-year field study was conducted to access the influence of integrated use of synthetic N fertilizer (urea) and farm manure on N use efficiency and wheat productivity. Treatments include i.e. Control, 100% N by Urea + 0%N by farm manure (FM), 75% N by Urea + 25 % N by FM, 50% N by Urea + 50% N by FM, 25% N by Urea + 75% N by FM, 0% N by Urea + 100% N by FM arranged in a triplicate randomized complete block design having recommended N rate of 150 kg ha–1. The results revealed that the treatment having 75% Urea and 25% FM followed by 50% Urea and 50% FM showed better results in term of wheat growth and yield. There was 98% increase in N uptake of wheat grains and 200% increase in NUE by the application of 75% urea+25% FM relative to sole application of urea. This study suggests use of 3:1 ratio of urea and FM for maximum NUE and sustainable wheat production.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiukang Wang ◽  
Yingying Xing

The purpose of this study is to investigate the interactions between irrigation and fertilizer treatments on soilNO3--N content and vertical distribution under drip fertigation in greenhouse tomatoes. Randomized block design with three replications and the treatments consisting of three levels of irrigation and three levels of N fertilizer were used. Three irrigation levels were W1 (100%  ET0), W2 (75%  ET0), and W3 (50%  ET0) and fertilizer levels were F1 (N240–P2O5120–K2O150 kg hm−2), F2 (N180–P2O590–K2O112.5 kg hm−2), and F3 (N120–P2O560–K2O75 kg hm−2). The result demonstrates that dynamics of soilNO3--N and its response to drip fertigation and levels of N moved toward the fore soil moist, and the average soilNO3--N content with W3 treatment was 1.23 times higher than that of the W1 treatment in 0–60 cm at 43 days after transplanting. The negative correlation between N use efficiency and levels of fertilizer N and the N recovery efficiency was increased with increases of N fertilizer application. The fertilizer nitrogen rate greatly significantly influenced soilNO3--N content. Avoiding N leaching through controlled matching N fertilizer application and controlled irrigation to tomato N demand is the key to maintain crop yield and improve N use efficiency.


Sign in / Sign up

Export Citation Format

Share Document