scholarly journals The Effect of Mutations in the TPR and Ankyrin Families of Alpha Solenoid Repeat Proteins

2021 ◽  
Vol 1 ◽  
Author(s):  
Matylda Anna Izert ◽  
Patrycja Emanuela Szybowska ◽  
Maria Wiktoria Górna ◽  
Matthew Merski

Protein repeats are short, highly similar peptide motifs that occur several times within a single protein, for example the TPR and Ankyrin repeats. Understanding the role of mutation in these proteins is complicated by the competing facts that 1) the repeats are much more restricted to a set sequence than non-repeat proteins, so mutations should be harmful much more often because there are more residues that are heavily restricted due to the need of the sequence to repeat and 2) the symmetry of the repeats in allows the distribution of functional contributions over a number of residues so that sometimes no specific site is singularly responsible for function (unlike enzymatic active site catalytic residues). To address this issue, we review the effects of mutations in a number of natural repeat proteins from the tetratricopeptide and Ankyrin repeat families. We find that mutations are context dependent. Some mutations are indeed highly disruptive to the function of the protein repeats while mutations in identical positions in other repeats in the same protein have little to no effect on structure or function.

2014 ◽  
Vol 395 (10) ◽  
pp. 1243-1252 ◽  
Author(s):  
Andreas Flütsch ◽  
Thilo Schroeder ◽  
Jonas Barandun ◽  
Rafael Ackermann ◽  
Martin Bühlmann ◽  
...  

Abstract Caspases play important roles in cell death, differentiation, and proliferation. Due to their high homology, especially of the active site, specific targeting of a particular caspase using substrate analogues is very difficult. Although commercially available small molecules based on peptides are lacking high specificity due to overlapping cleavage motives between different caspases, they are often used as specific tools. We have selected designed ankyrin repeat proteins (DARPins) against human caspases 1–9 and identified high-affinity binders for the targeted caspases, except for caspase 4. Besides previously reported caspase-specific DARPins, we generated novel DARPins (D1.73, D5.15, D6.11, D8.1, D8.4, and D9.2) and confirmed specificity for caspases 1, 5, 6, and 8 using a subset of caspase family members. In addition, we solved the crystal structure of caspase 8 in complex with DARPin D8.4. This binder interacts with non-conserved residues on the large subunit, thereby explaining its specificity. Structural analysis of this and other previously published crystal structures of caspase/DARPin complexes depicts two general binding areas either involving active site forming loops or a surface area laterally at the large subunit of the enzyme. Both surface areas involve non-conserved surface residues of caspases.


Author(s):  
Ana Pérez-González ◽  
Zhi-Yong Yang ◽  
Dmitriy A. Lukoyanov ◽  
Dennis R. Dean ◽  
Lance C. Seefeldt ◽  
...  

Author(s):  
Alexandra Kosareva ◽  
Mukesh Punjabi ◽  
Amanda Ochoa-Espinosa ◽  
Lifen Xu ◽  
Jonas V. Schaefer ◽  
...  

2000 ◽  
Vol 275 (46) ◽  
pp. 35792-35798 ◽  
Author(s):  
Isabelle Schepens ◽  
Eric Ruelland ◽  
Myroslawa Miginiac-Maslow ◽  
Pierre Le Maréchal ◽  
Paulette Decottignies

Sign in / Sign up

Export Citation Format

Share Document