methyl group transfer
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 17 ◽  
pp. 2295-2301
Author(s):  
Laurin Flemmich ◽  
Sarah Moreno ◽  
Ronald Micura

A naturally occurring riboswitch can utilize 7-aminomethyl-O6-methyl-7-deazaguanine (m6preQ1) as cofactor for methyl group transfer resulting in cytosine methylation. This recently discovered riboswitch-ribozyme activity opens new avenues for the development of RNA labeling tools based on tailored O6-alkylated preQ1 derivatives. Here, we report a robust synthesis for this class of pyrrolo[2,3-d]pyrimidines starting from readily accessible N2-pivaloyl-protected 6-chloro-7-cyano-7-deazaguanine. Substitution of the 6-chloro atom with the alcoholate of interest proceeds straightforward. The transformation of the 7-cyano substituent into the required aminomethyl group turned out to be challenging and was solved by a hydration reaction sequence on a well-soluble dimethoxytritylated precursor via in situ oxime formation. The synthetic path now provides a solid foundation to access O6-alkylated 7-aminomethyl-7-deazaguanines for the development of RNA labeling tools based on the preQ1 class-I riboswitch scaffold.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yiqing Cai ◽  
Rui Feng ◽  
Tiange Lu ◽  
Xiaomin Chen ◽  
Xiangxiang Zhou ◽  
...  

AbstractN6-methyladenosine (m6A) is a prevalent internal RNA modification in higher eukaryotic cells. As the pivotal m6A regulator, RNA methyltransferase-like 3 (METTL3) is responsible for methyl group transfer in the progression of m6A modification. This epigenetic regulation contributes to the structure and functional regulation of RNA and further promotes tumorigenesis and tumor progression. Accumulating evidence has illustrated the pivotal roles of METTL3 in a variety of human cancers. Here, we systemically summarize the interaction between METTL3 and RNAs, and illustrate the multiple functions of METTL3 in human cancer. METLL3 is aberrantly expressed in a variety of tumors. Elevation of METTL3 is usually associated with rapid progression and poor prognosis of tumors. On the other hand, METTL3 may also function as a tumor suppressor in several cancers. Based on the tumor-promoting effect of METTL3, the possibility of applying METTL3 inhibitors is further discussed, which is expected to provide novel insights into antitumor therapy.


2021 ◽  
Author(s):  
Charles A. Lewis ◽  
Richard Wolfenden

ABSTRACTSAM is a powerful methylating agent, with a methyl group transfer potential matching the phosphoryl group transfer potential of ATP. SAM-dependent N-methyltransferases have evolved to catalyze the modification of specific lysine residues in histones and transcription factors, in addition to generating epinephrine, N-methylnicotinamide, and a quaternary amine (betaine) that is used to maintain osmotic pressure in plants and halophilic bacteria. To assess the catalytic power of these enzymes and their potential susceptibility to transition state and multisubstrate analogue inhibitors, we determined the rates and positions of equilibrium of methyl transfer from the trimethylsulfonium ion to model amines in the absence of a catalyst. Unlike the methyl group transfer potential of SAM, which becomes more negative with increasing pH throughout the normal pH range, equilibrium constants for the hydrolytic demethylation of secondary, tertiary and quaternary amines are found to be insensitive to changing pH and resemble to each other in magnitude, with an average ΔG value of ∼ -0.7 kcal/mol at pH 7. Thus, each of the three steps in the mono- di- and trimethylation of lysine by SAM is accompanied by a free energy change of -7.5 kcal/mol in neutral solution. Arrhenius analysis of the uncatalyzed reactions shows that the unprotonated form of glycine attacks the trimethylsulfonium ion (TMS++) with a second order rates constant of 1.8 × 10−7 M-1 s-1 at 25 °C (ΔH‡ = 22 kcal/mol and TΔS‡ = -6 kcal/mol). Comparable values are observed for the methylation of secondary and tertiary amines, with k25 = 1.1 × 10−7 M-1 s-1 for sarcosine and 4.3 × 10−8 M-1 s-1 for dimethylglycine. The nonenzymatic methylation of imidazole and methionine by TMS++, benchmarks for the methylation of histidine and methionine residues by SETD3, exhibit k25 values of 3.3 × 10−9 and 1.2 × 10−9 M-1 s-1 respectively. Lysine methylation by SAM, although slow under physiological conditions (t1/2 7 weeks at 25 °C), is accelerated 1.1 × 1012 -fold at the active site of a SET domain methyltransferase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Inah Hwang ◽  
Hiroki Uchida ◽  
Ziwei Dai ◽  
Fei Li ◽  
Teresa Sanchez ◽  
...  

AbstractNeural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential.


2020 ◽  
Author(s):  
Inah Hwang ◽  
Ziwei Dai ◽  
Fei Li ◽  
Teresa Sanchez ◽  
Jason W Locasale ◽  
...  

AbstractNeural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes, including elevated oxidative stress. A time-dependent stress response that regulates the dynamic balance between quiescence and differentiation is thus essential to preserve NSPC long-term regenerative potential. Here we report that acutely elevated cellular oxidative stress in NSPCs suppresses neurogenic differentiation through induction of FOXO3-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 promoting upregulation of its transcriptional target glycine-N-methyltransferase (GNMT) and thus depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which trigger cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING/IFN-I cascade. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that preserves its long-term regenerative potential.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Sara Kleindienst ◽  
Karuna Chourey ◽  
Gao Chen ◽  
Robert W. Murdoch ◽  
Steven A. Higgins ◽  
...  

ABSTRACTDichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, which strictly requires DCM as a growth substrate. Proteomic workflows applied to DCM-grown consortium RM biomass revealed a total of 1,705 nonredundant proteins, 521 of which could be assigned to strain RM. In the presence of DCM, strain RM expressed a complete set of Wood-Ljungdahl pathway enzymes, as well as proteins implicated in chemotaxis, motility, sporulation, and vitamin/cofactor synthesis. Four corrinoid-dependent methyltransferases were among the most abundant proteins. Notably, two of three putative reductive dehalogenases (RDases) encoded within strain RM’s genome were also detected in high abundance. Expressed RDase 1 and RDase 2 shared 30% amino acid identity, and RDase 1 was most similar to an RDase ofDehalococcoides mccartyistrain WBC-2 (AOV99960, 52% amino acid identity), while RDase 2 was most similar to an RDase ofDehalobactersp. strain UNSWDHB (EQB22800, 72% amino acid identity). Although the involvement of RDases in anaerobic DCM metabolism has yet to be experimentally verified, the proteome characterization results implicated the possible participation of one or more reductive dechlorination steps and methyl group transfer reactions, leading to a revised proposal for an anaerobic DCM degradation pathway.IMPORTANCENaturally produced and anthropogenically released DCM can reside in anoxic environments, yet little is known about the diversity of organisms, enzymes, and mechanisms involved in carbon-chlorine bond cleavage in the absence of oxygen. A proteogenomic approach identified two RDases and four corrinoid-dependent methyltransferases expressed by the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, suggesting that reductive dechlorination and methyl group transfer play roles in anaerobic DCM degradation. These findings suggest that the characterized DCM-degrading bacteriumDehalobacterium formicoaceticumand “CandidatusDichloromethanomonas elyunquensis” strain RM utilize distinct strategies for carbon-chlorine bond cleavage, indicating that multiple pathways evolved for anaerobic DCM metabolism. The specific proteins (e.g., RDases and methyltransferases) identified in strain RM may have value as biomarkers for monitoring anaerobic DCM degradation in natural and contaminated environments.


2018 ◽  
Vol 53 (5) ◽  
pp. 379-384 ◽  
Author(s):  
Rafał Frański ◽  
Błażej Gierczyk ◽  
Maciej Zalas ◽  
Wojciech Jankowski ◽  
Marcin Hoffmann

Sign in / Sign up

Export Citation Format

Share Document