scholarly journals Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing

Author(s):  
Antonio Casado-Díaz ◽  
José Manuel Quesada-Gómez ◽  
Gabriel Dorado
2020 ◽  
pp. 088532822096392
Author(s):  
Salma Abolgheit ◽  
Sally Abdelkader ◽  
Moustafa Aboushelib ◽  
Enas Omar ◽  
Radwa Mehanna

Background Over the past ten years, regenerative medicine has focused on the regeneration and the reconstruction of damaged, diseased, or lost tissues and organs. Skin, being the largest organ in the human body, had attained a good attraction in this field. Delayed wound healing is one of the most challenging clinical medicine complications. This study aimed to evaluate the collagen chitosan scaffold’s effect alone, or enriched with either bone marrow-derived mesenchymal stem cells (BM-MSCs) or their secreted extracellular vesicles (EVs) on the duration and quality of skin wound healing. Methods A full-thickness skin wound was induced on the back of 32 adult male Sprague-Dawley rats. The wounds were either covered with collagen chitosan scaffolds alone, scaffolds enriched with stem cells, or extracellular vesicles. Unprotected wounds were used as control. Healing duration, collagen deposition and alignment, CD 68+ macrophage count, and functional tensile strength of healed skin were assessed (α = 0.05, n = 8). Results The rate of skin healing was significantly accelerated in all treated groups compared to the control. Immuno-histochemical assessment of CD68+ macrophages showed enhanced macrophages count, in addition to higher collagen deposition and better collagen alignment in EVs and BM-MSCs treated groups compared to the control group. Higher tensile strength values reflected the better collagen deposition and alignment for these groups. EVs showed higher amounts of collagen deposition and better alignment compared to MSCs treated group. Conclusion The collagen chitosan scaffolds enriched with MSCs or their EVs improved wound healing and improved the quantity and remodeling of collagen with a better assignment to EVs.


2016 ◽  
Vol 10 (3) ◽  
pp. 228-234 ◽  
Author(s):  
Işıl Aydemir ◽  
Şamil Öztürk ◽  
Pınar Kılıçaslan Sönmez ◽  
Mehmet İbrahim Tuğlu

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Liu ◽  
Xinyu Qiu ◽  
Yajie Lv ◽  
Chenxi Zheng ◽  
Yan Dong ◽  
...  

Abstract Background As the major interface between the body and the external environment, the skin is liable to various injuries. Skin injuries often lead to severe disability, and the exploration of promising therapeutic strategies is of great importance. Exogenous mesenchymal stem cell (MSC)-based therapy is a potential strategy due to the apparent therapeutic effects, while the underlying mechanism is still elusive. Interestingly, we observed the extensive apoptosis of exogenous bone marrow mesenchymal stem cells (BMMSCs) in a short time after transplantation in mouse skin wound healing models. Considering the roles of extracellular vesicles (EVs) in intercellular communication, we hypothesized that the numerous apoptotic bodies (ABs) released during apoptosis may partially contribute to the therapeutic effects. Methods ABs derived from MSCs were extracted, characterized, and applied in mouse skin wound healing models, and the therapeutic effects were evaluated. Then, the target cells of ABs were explored, and the effects of ABs on macrophages were investigated in vitro. Results We found ABs derived from MSCs promoted cutaneous wound healing via triggering the polarization of macrophages towards M2 phenotype. In addition, the functional converted macrophages further enhanced the migration and proliferation abilities of fibroblasts, which together facilitated the wound healing process. Conclusions Collectively, our study demonstrated that transplanted MSCs promoted cutaneous wound healing partially through releasing apoptotic bodies which could convert the macrophages towards an anti-inflammatory phenotype that plays a crucial role in the tissue repair process.


2010 ◽  
Vol 18 (6) ◽  
pp. 655-661 ◽  
Author(s):  
Young Keul Jeon ◽  
Yun Ho Jang ◽  
Dong Ryeol Yoo ◽  
Si Na Kim ◽  
Sang Koo Lee ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93726 ◽  
Author(s):  
Vikram Sabapathy ◽  
Balasubramanian Sundaram ◽  
Sreelakshmi VM ◽  
Pratheesh Mankuzhy ◽  
Sanjay Kumar

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1467
Author(s):  
Do-Wan Kim ◽  
Chang-Hyung Choi ◽  
Jong Pil Park ◽  
Sei-Jung Lee

Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases, but the clinical application of curcumin is restricted by its poor aqueous solubility and its low permeability and bioavailability levels. In the present study, we investigate the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human mesenchymal stem cells (MSCs) during the skin wound healing process. CN significantly increased the motility of umbilical cord blood (UCB)-MSCs and showed 10,000-fold greater migration efficacy than curcumin. CN stimulated the phosphorylation of c-Src and protein kinase C which are responsible for the distinctive activation of the MAPKs. Interestingly, CN significantly induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhanced wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.


Sign in / Sign up

Export Citation Format

Share Document