scholarly journals Development of a Genome-Scale Metabolic Model of Clostridium thermocellum and Its Applications for Integration of Multi-Omics Datasets and Computational Strain Design

Author(s):  
Sergio Garcia ◽  
R. Adam Thompson ◽  
Richard J. Giannone ◽  
Satyakam Dash ◽  
Costas D. Maranas ◽  
...  
2020 ◽  
Author(s):  
Sergio Garcia ◽  
R. Adam Thompson ◽  
Richard J. Giannone ◽  
Satyakam Dash ◽  
Costas D. Maranas ◽  
...  

AbstractSolving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as catalysts. The anaerobic thermophile Clostridium thermocellum is a promising bacterium for bioconversion due to its capability to efficiently degrade untreated lignocellulosic biomass. However, the complex metabolism of C. thermocellum is not fully understood, hindering metabolic engineering to achieve high titers, rates, and yields of targeted molecules. In this study, we developed an updated genome-scale metabolic model of C. thermocellum that accounts for recent metabolic findings, has improved prediction accuracy, and is standard-conformant to ensure easy reproducibility. We illustrated two applications of the developed model. We first formulated a multi-omics integration protocol and used it to understand redox metabolism and potential bottlenecks in biofuel (e.g., ethanol) production in C. thermocellum. Second, we used the metabolic model to design modular cells for efficient production of alcohols and esters with broad applications as flavors, fragrances, solvents, and fuels. The proposed designs not only feature intuitive push-and-pull metabolic engineering strategies, but also novel manipulations around important central metabolic branch-points. We anticipate the developed genome-scale metabolic model will provide a useful tool for system analysis of C. thermocellum metabolism to fundamentally understand its physiology and guide metabolic engineering strategies to rapidly generate modular production strains for effective biosynthesis of biofuels and biochemicals from lignocellulosic biomass.


2019 ◽  
Author(s):  
Shany Ofaim ◽  
Raphy Zarecki ◽  
Seema Porob ◽  
Daniella Gat ◽  
Tamar Lahav ◽  
...  

ABSTRACTAtrazine is an herbicide and pollutant of great environmental concern that is naturally biodegraded by microbial communities. The efficiency of biodegradation can be improved through the stimulating addition of fertilizers, electron acceptors, etc. In recent years, metabolic modelling approaches have become widely used as anin silicotool for organism-level phenotyping and the subsequent development of metabolic engineering strategies including biodegradation improvement. Here, we constructed a genome scale metabolic model,iRZ960, forPaenarthrobacter aurescensTC1 – a widely studied atrazine degrader - aiming at simulating its degradation activity. A mathematical stoichiometric metabolic model was constructed based on a published genome sequence ofP. aurescensTC1. An Initial draft model was automatically constructed using the RAST and KBase servers. The draft was developed into a predictive model through semi-automatic gap-filling procedures including manual curation. In addition to growth predictions under different conditions, model simulations were used to identify optimized media for enhancing the natural degradation of atrazine without a need in strain design via genetic modifications. Model predictions for growth and atrazine degradation efficiency were tested in myriad of media supplemented with different combinations of carbon and nitrogen sources that were verifiedin vitro. Experimental validations support the reliability of the model’s predictions for both bacterial growth (biomass accumulation) and atrazine degradation. Predictive tools, such as the presented model, can be applied for achieving optimal biodegradation efficiencies and for the development of ecologically friendly solutions for pollutant degradation in changing environments.


2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2012 ◽  
Vol 78 (24) ◽  
pp. 8735-8742 ◽  
Author(s):  
Yilin Fang ◽  
Michael J. Wilkins ◽  
Steven B. Yabusaki ◽  
Mary S. Lipton ◽  
Philip E. Long

ABSTRACTAccurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within anin silicomodel using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model ofGeobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-basedin silicomodelof G. metallireducensrelates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637G. metallireducensproteins detected during the 2008 experiment were associated with specific metabolic reactions in thein silicomodel. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through thein silicomodel reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in thein silicomodel that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 168
Author(s):  
John I. Hendry ◽  
Hoang V. Dinh ◽  
Debolina Sarkar ◽  
Lin Wang ◽  
Anindita Bandyopadhyay ◽  
...  

Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N2 fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1252-1266 ◽  
Author(s):  
Hassan B. Hartman ◽  
David A. Fell ◽  
Sergio Rossell ◽  
Peter Ruhdal Jensen ◽  
Martin J. Woodward ◽  
...  

Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth.


2021 ◽  
Author(s):  
Christopher E. Lawson ◽  
Aniela B. Mundinger ◽  
Hanna Koch ◽  
Tyler B. Jacobson ◽  
Coty A. Weathersby ◽  
...  

AbstractNitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used constraint-based analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and 13C-tracer experiments with bicarbonate and formate coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings support that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation. We also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes.ImportanceNitrospira are globally abundant nitrifying bacteria in soil and aquatic ecosystems and wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of N. moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite- oxidizing bacteria.


2015 ◽  
Vol 7 (8) ◽  
pp. 869-882 ◽  
Author(s):  
M. Ahsanul Islam ◽  
Karsten Zengler ◽  
Elizabeth A. Edwards ◽  
Radhakrishnan Mahadevan ◽  
Gregory Stephanopoulos

Moorella thermoaceticais a strictly anaerobic, endospore-forming, and metabolically versatile acetogenic bacterium capable of conserving energy by both autotrophic (acetogenesis) and heterotrophic (homoacetogenesis) modes of metabolism.


2009 ◽  
Vol 2 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Timothy D. Scheibe ◽  
Radhakrishnan Mahadevan ◽  
Yilin Fang ◽  
Srinath Garg ◽  
Philip E. Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document