scholarly journals Comparative Transcriptome Analysis Demonstrates the Positive Effect of the Cyclic AMP Receptor Protein Crp on Daptomycin Biosynthesis in Streptomyces roseosporus

Author(s):  
Jiequn Wu ◽  
Danqing Chen ◽  
Jinrong Wu ◽  
Xiaohe Chu ◽  
Yongmei Yang ◽  
...  

Daptomycin, which is produced by Streptomyces roseosporus, has been characterized as a novel cyclic lipopeptide antibiotic that is effective against Gram-positive bacteria. The biosynthesis of daptomycin is regulated by various factors. In the present study, we demonstrated that the cyclic AMP receptor protein (Crp) plays an important role in producing daptomycin in the S. roseosporus industrial strain. We found that daptomycin production from the crp deletion strain decreased drastically, whereas production from the crp overexpression strain increased by 22.1%. Transcriptome and qPCR analyses showed that some genes related to the daptomycin biosynthetic gene cluster (dpt) and the pleiotropic regulator (adpA) were significantly upregulated. RNA-seq also shows Crp to be a multifunctional regulator that modulates primary metabolism and enhances precursor flux to secondary metabolite biosynthesis. These results provide guidance for the development and improvement of potential natural products.

2000 ◽  
Vol 182 (23) ◽  
pp. 6774-6782 ◽  
Author(s):  
Carolyn C. Holcroft ◽  
Susan M. Egan

ABSTRACT The Escherichia coli rhaSR operon encodes two AraC family transcription activators, RhaS and RhaR, and is activated by RhaR in the presence of l-rhamnose. β-Galactosidase assays of various rhaS-lacZ promoter fusions combined with mobility shift assays indicated that a cyclic AMP receptor protein (CRP) site located at −111.5 is also required for full activation of rhaSR expression. To address the mechanisms of activation by CRP and the RNA polymerase α-subunit C-terminal domain (α-CTD) at rhaSR, we tested the effects of alanine substitutions in CRP activating regions 1 and 2, overexpression of a truncated version of α (α-Δ235), and alanine substitutions throughout α-CTD. We found that DNA-contacting residues in α-CTD are required for full activation, and for simplicity, we discuss α-CTD as a third activator of rhaSR. CRP and RhaR could each partially activate transcription in the absence of the other two activators, and α-CTD was not capable of activation alone. In the case of CRP, this suggests that this activation involves neither an α-CTD interaction nor cooperative binding with RhaR, while in the case of RhaR, this suggests the likelihood of direct interactions with core RNA polymerase. We also found that CRP, RhaR, and α-CTD each have synergistic effects on activation by the others, suggesting direct or indirect interactions among all three. We have some evidence that the α-CTD–CRP and α-CTD–RhaR interactions might be direct. The magnitude of the synergistic effects was usually greater with just two activators than with all three, suggesting possible redundancies in the mechanisms of activation by CRP, α-CTD, and RhaR.


1980 ◽  
Vol 26 (12) ◽  
pp. 1508-1511 ◽  
Author(s):  
Ann D. E. Fraser ◽  
Hiroshi Yamazaki

It has not been clarified whether the utilization of mannose by Escherichia coli requires adenosine 3′,5′-cyclic monophosphate (cyclic AMP). Using an adenylyl cyclase deficient mutant (CA8306B) and a cyclic AMP receptor protein (CRP) deficient mutant (5333B) we have shown that the utilization of mannose is dependent on the cyclic AMP–CRP complex. 2-Deoxyglucose (DG) is a nonmetabolizable glucose analog specific for the phosphotransferase system (PTS) which transports mannose (termed here PTSM). Growth of CA8306B on glycerol is unaffected by addition of the analog, whereas growth of the strain on glycerol plus cyclic AMP ceases im mediately upon addition of DG. These results suggest that the formation of PTSM is dependent on cyclic AMP. In addition, CA8306B grown on glycerol plus cyclic AMP can immediately utilize mannose when transferred to a medium containing mannose as a sole carbon source, whereas the same strain grown on glycerol without cyclic AMP cannot utilize mannose when so transferred. These results suggest that the formation of PTSM does not require an exogenous inducer.


Sign in / Sign up

Export Citation Format

Share Document