cyclic lipopeptide
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 55)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Peter Klausmann ◽  
Lars Lilge ◽  
Moritz Aschern ◽  
Katja Hennemann ◽  
Marius Henkel ◽  
...  

Abstract Background Bacillus subtilis is a well-established host for a variety of bioproduction processes, with much interest focused on the production of biosurfactants such as the cyclic lipopeptide surfactin. Surfactin production is tightly intertwined with quorum sensing and regulatory cell differentiation processes. As previous studies have shown, a non-sporulating B. subtilis strain 3NA encoding a functional sfp locus but mutations in the spo0A and abrB loci, called JABs32, exhibits noticeably increased surfactin production capabilities. In this work, the impacts of introducing JABs32 mutations in the genes spo0A, abrB and abh from 3NA into strain KM1016, a surfactin-forming derivative of B. subtilis 168, was investigated. This study aims to show these mutations are responsible for the surfactin producing performance of strain JABs32 in fed-batch bioreactor cultivations. Results Single and double mutant strains of B. subtilis KM1016 were constructed encoding gene deletions of spo0A, abrB and homologous abh. Furthermore, an elongated abrB version, called abrB*, as described for JABs32 was integrated. Single and combinatory mutant strains were analysed in respect of growth behaviour, native PsrfA promoter expression and surfactin production. Deletion of spo0A led to increased growth rates with lowered surfactin titers, while deletion or elongation of abrB resulted in lowered growth rates and high surfactin yields, compared to KM1016. The double mutant strains B. subtilis KM1036 and KM1020 encoding Δspo0A abrB* and Δspo0A ΔabrB were compared to reference strain JABs32, with KM1036 exhibiting similar production parameters and impeded cell growth and surfactin production for KM1020. Bioreactor fed-batch cultivations comparing a Δspo0A abrB* mutant of KM1016, KM681, with JABs32 showed a decrease of 32% in surfactin concentration. Conclusions The genetic differences of B. subtilis KM1016 and JABs32 give rise to new and improved fermentation methods through high cell density processes. Deletion of the spo0A locus was shown to be the reason for higher biomass concentrations. Only in combination with an elongation of abrB was this strain able to reach high surfactin titers of 18.27 g L−1 in fed-batch cultivations. This work shows, that a B. subtilis strain can be turned into a high cell density surfactin production strain by introduction of two mutations.


2021 ◽  
Author(s):  
Sarah Mollerup ◽  
Christine Elmeskov ◽  
Heidi Gumpert ◽  
Mette Pinholt ◽  
Tobias Steen Sejersen ◽  
...  

AbstractBackgroundDaptomycin is a cyclic lipopeptide used in the treatment of vancomycin-resistant Enterococcus faecium (VREfm). However, the development of daptomycin-resistant VREfm challenges the treatment of nosocomial VREfm infections. Resistance mechanisms of daptomycin are not fully understood. Here we analysed the genomic changes leading to a daptomycin-susceptible VREfm isolate becoming resistant after 40 days of daptomycin and linezolid combination therapy.MethodsThe two isogenic VREfm isolates (daptomycin-susceptible and daptomycin-resistant) were analysed using whole genome sequencing with Illumina and Nanopore.ResultsWhole genome comparative analysis identified the loss of a 46.5 kb fragment and duplication of a 29.7 kb fragment in the daptomycin-resistant isolate, with many implicated genes involved in cell wall synthesis. Two plasmids of the daptomycin-susceptible isolate were also found integrated in the chromosome of the resistant isolate. One nonsynonymous SNP in the rpoC gene was identified in the daptomycin-resistant isolate.ConclusionsDaptomycin resistance developed through chromosomal rearrangements leading to altered cell wall structure. Such novel types of resistance mechanisms can only be identified by comparing closed genomes of isogenic isolates.


2021 ◽  
Vol 9 (8) ◽  
pp. 1766
Author(s):  
Léa Girard ◽  
Cédric Lood ◽  
Monica Höfte ◽  
Peter Vandamme ◽  
Hassan Rokni-Zadeh ◽  
...  

The genus Pseudomonas hosts an extensive genetic diversity and is one of the largest genera among Gram-negative bacteria. Type strains of Pseudomonas are well known to represent only a small fraction of this diversity and the number of available Pseudomonas genome sequences is increasing rapidly. Consequently, new Pseudomonas species are regularly reported and the number of species within the genus is constantly evolving. In this study, whole genome sequencing enabled us to define 43 new Pseudomonas species and provide an update of the Pseudomonas evolutionary and taxonomic relationships. Phylogenies based on the rpoD gene and whole genome sequences, including, respectively, 316 and 313 type strains of Pseudomonas, revealed sixteen groups of Pseudomonas and, together with the distribution of cyclic lipopeptide biosynthesis gene clusters, enabled the partitioning of the P. putida group into fifteen subgroups. Pairwise average nucleotide identities were calculated between type strains and a selection of 60 genomes of non-type strains of Pseudomonas. Forty-one strains were incorrectly assigned at the species level and among these, 19 strains were shown to represent an additional 13 new Pseudomonas species that remain to be formally classified. This work pinpoints the importance of correct taxonomic assignment and phylogenetic classification in order to perform integrative studies linking genetic diversity, lifestyle, and metabolic potential of Pseudomonas spp.


2021 ◽  
Vol 118 (33) ◽  
pp. e2107695118
Author(s):  
Vivien Hotter ◽  
David Zopf ◽  
Hak Joong Kim ◽  
Anja Silge ◽  
Michael Schmitt ◽  
...  

Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Zhou ◽  
Chunxu Song ◽  
Claudia Y. Muñoz ◽  
Oscar P. Kuipers

The gray mold caused by the phytopathogen Botrytis cinerea presents a threat to global food security. For the biological regulation of several plant diseases, Bacillus species have been extensively studied. In this work, we explore the ability of a bacterial strain, Bacillus cabrialesii BH5, that was isolated from tomato rhizosphere soil, to control the fungal pathogen B. cinerea. Strain B. cabrialesii BH5 showed a strong antifungal activity against B. cinerea. A compound was isolated and identified as a cyclic lipopeptide of the fengycin family by high-performance liquid chromatography and tandem mass spectrometry (ESI-MS/MS) that we named fengycin H. The fengycin H-treated hyphae of B. cinerea displayed stronger red fluorescence than the control, which is clearly indicating that fengycin H triggered the hyphal cell membrane defects. Moreover, root inoculation of tomato seedlings with BH5 effectively promoted the growth of tomato plants. Transcription analysis revealed that both BH5 and fengycin H stimulate induced systemic resistance of tomato plants via the jasmonic acid signaling pathway and provide a strong biocontrol effect in vivo. Therefore, the strain BH5 and fengycin H are very promising candidates for biological control of B. cinerea and the associated gray mold.


2021 ◽  
Author(s):  
Yu Hou ◽  
Yuko Bando ◽  
David Carrasco Flores ◽  
Vivien Susann Hotter ◽  
Bastian Schiweck ◽  
...  

The antagonistic bacterium Pseudomonas protegens secretes the cyclic lipopeptide orfamide A, which triggers a Ca2+ signal, causing the deflagellation of the green microalga Chlamydomonas reinhardtii. By investigating targeted synthetic orfamide A variants and inhibitors, we found that at least two Ca2+-signalling pathways and TRP channels are involved in this response.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4478
Author(s):  
Su-Young Hong ◽  
Dong-Hee Lee ◽  
Jin-Hwan Lee ◽  
Md. Azizul Haque ◽  
Kye-Man Cho

The cyclic lipopeptide produced from Bacillus pumilus strain HY1 was isolated from Korean soybean sauce cheonggukjang. The chemical structures of the surfactin isomers were analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). The five potential surfactin isoforms were detected with protonated masses of m/z 994.7, 1008.7, 1022.7, 1036.7, and 1050.7 and different structures in combination with Na+, K+, and Ca2+ ions. ESI-MS/MS analysis revealed that the isolated surfactin possessed the precise amino acid sequence LLVDLL and hydroxyl fatty acids with 12 to 16 carbons. The surfactin content during cheonggukjang fermentation increased from 0.3 to 51.2 mg/kg over 60 h of fermentation. The mixture of five surfactin isoforms of cheonggukjang inhibited the growth of two cancer cell lines. The growth of both MCF-7 and Caco-2 cells was strongly inhibited with 100 μg/μL of surfactin. This study is the first-time report of five surfactin isomers of Bacillus pumilus strain HY1 during Korean soybean sauce cheonggukjang fermentation, which has cytotoxic properties.


Sign in / Sign up

Export Citation Format

Share Document