scholarly journals Early Deformation of Deep Brain Stimulation Electrodes Following Surgical Implantation: Intracranial, Brain, and Electrode Mechanics

Author(s):  
Frédéric Chapelle ◽  
Lucie Manciet ◽  
Bruno Pereira ◽  
Anna Sontheimer ◽  
Jérôme Coste ◽  
...  

IntroductionAlthough deep brain stimulation is nowadays performed worldwide, the biomechanical aspects of electrode implantation received little attention, mainly as physicians focused on the medical aspects, such as the optimal indication of the surgical procedure, the positive and adverse effects, and the long-term follow-up. We aimed to describe electrode deformations and brain shift immediately after implantation, as it may highlight our comprehension of intracranial and intracerebral mechanics.Materials and MethodsSixty electrodes of 30 patients suffering from severe symptoms of Parkinson’s disease and essential tremor were studied. They consisted of 30 non-directional electrodes and 30 directional electrodes, implanted 42 times in the subthalamus and 18 times in the ventrolateral thalamus. We computed the x (transversal), y (anteroposterior), z (depth), torsion, and curvature deformations, along the electrodes from the entrance point in the braincase. The electrodes were modelized from the immediate postoperative CT scan using automatic voxel thresholding segmentation, manual subtraction of artifacts, and automatic skeletonization. The deformation parameters were computed from the curve of electrodes using a third-order polynomial regression. We studied these deformations according to the type of electrodes, the clinical parameters, the surgical-related accuracy, the brain shift, the hemisphere and three tissue layers, the gyration layer, the white matter stem layer, and the deep brain layer (type I error set at 5%).ResultsWe found that the implanted first hemisphere coupled to the brain shift and the stiffness of the type of electrode impacted on the electrode deformations. The deformations were also different according to the tissue layers, to the electrode type, and to the first-hemisphere-brain-shift effect.ConclusionOur findings provide information on the intracranial and brain biomechanics and should help further developments on intracerebral electrode design and surgical issues.

2007 ◽  
Vol 107 (5) ◽  
pp. 989-997 ◽  
Author(s):  
Yasushi Miyagi ◽  
Fumio Shima ◽  
Tomio Sasaki

Object The goal of this study was to focus on the tendency of brain shift during stereotactic neurosurgery and the shift's impact on the unilateral and bilateral implantation of electrodes for deep brain stimulation (DBS). Methods Eight unilateral and 10 bilateral DBS electrodes at 10 nuclei ventrales intermedii and 18 subthalamic nuclei were implanted in patients at Kaizuka Hospital with the aid of magnetic resonance (MR) imaging–guided and microelectrode-guided methods. Brain shift was assessed as changes in the 3D coordinates of the anterior and posterior commissures (AC and PC) with MR images before and immediately after the implantation surgery. The positions of the implanted electrodes, based on the midcommissural point and AC–PC line, were measured both on x-ray films (virtual position) during surgery and the postoperative MR images (actual position) obtained on the 7th day postoperatively. Results Contralateral and posterior shift of the AC and PC were the characteristics of unilateral and bilateral procedures, respectively. The authors suggest the following. 1) The first unilateral procedure elicits a unilateral air invasion, resulting in a contralateral brain shift. 2) During the second procedure in the bilateral surgery, the contralateral shift is reset to the midline and, at the same time, the anteroposterior support by the contralateral hemisphere against gravity is lost due to a bilateral air invasion, resulting in a significant posterior (caudal) shift. Conclusions To note the tendency of the brain to shift is very important for accurate implantation of a DBS electrode or high frequency thermocoagulation, as well as for the prediction of therapeutic and adverse effects of stereotactic surgery.


2011 ◽  
Vol 70 (suppl_1) ◽  
pp. ons114-ons124 ◽  
Author(s):  
Nova B. Thani ◽  
Arul Bala ◽  
Christopher R. P. Lind

Abstract BACKGROUND: Accurate placement of a probe to the deep regions of the brain is an important part of neurosurgery. In the modern era, magnetic resonance image (MRI)-based target planning with frame-based stereotaxis is the most common technique. OBJECTIVE: To quantify the inaccuracy in MRI-guided frame-based stereotaxis and to assess the relative contributions of frame movements and MRI distortion. METHODS: The MRI-directed implantable guide-tube technique was used to place carbothane stylettes before implantation of the deep brain stimulation electrodes. The coordinates of target, dural entry point, and other brain landmarks were compared between preoperative and intraoperative MRIs to determine the inaccuracy. RESULTS: The mean 3-dimensional inaccuracy of the stylette at the target was 1.8 mm (95% confidence interval [CI], 1.5-2.1. In deep brain stimulation surgery, the accuracy in the x and y (axial) planes is important; the mean axial inaccuracy was 1.4 mm (95% CI, 1.1-1.8). The maximal mean deviation of the head frame compared with brain over 24.1 ± 1.8 hours was 0.9 mm (95% CI, 0.5-1.1). The mean 3-dimensional inaccuracy of the dural entry point of the stylette was 1.8 mm (95% CI, 1.5-2.1), which is identical to that of the target. CONCLUSION: Stylette positions did deviate from the plan, albeit by 1.4 mm in the axial plane and 1.8 mm in 3-dimensional space. There was no difference between the accuracies at the dura and the target approximately 70 mm deep in the brain, suggesting potential feasibility for accurate planning along the whole trajectory.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243438
Author(s):  
Hannah Ihme ◽  
Rainer K. W. Schwarting ◽  
Liana Melo-Thomas

Deep brain stimulation (DBS) of the colliculus inferior (IC) improves haloperidol-induced catalepsy and induces paradoxal kinesia in rats. Since the IC is part of the brain aversive system, DBS of this structure has long been related to aversive behavior in rats limiting its clinical use. This study aimed to improve intracollicular DBS parameters in order to avoid anxiogenic side effects while preserving motor improvements in rats. Catalepsy was induced by systemic haloperidol (0.5mg/kg) and after 60 min the bar test was performed during which a given rat received continuous (5 min, with or without pre-stimulation) or intermittent (5 x 1 min) DBS (30Hz, 200–600μA, pulse width 100μs). Only continuous DBS with pre-stimulation reduced catalepsy time. The rats were also submitted to the elevated plus maze (EPM) test and received either continuous stimulation with or without pre-stimulation, or sham treatment. Only rats receiving continuous DBS with pre-stimulation increased the time spent and the number of entries into the open arms of the EPM suggesting an anxiolytic effect. The present intracollicular DBS parameters induced motor improvements without any evidence of aversive behavior, pointing to the IC as an alternative DBS target to induce paradoxical kinesia improving motor deficits in parkinsonian patients.


2021 ◽  
pp. 405-420
Author(s):  
Georg Northoff

Neuroethics, located at the interface of conceptual and empirical dimensions, carries major implications for psychiatry, such as the neuroscientific basis of ethical concepts as moral agency. Drawing on data in neuroscience, this chapter highlights issues central to psychiatric ethics. First, it addresses a reductionistic model of the brain, often conceived as purely neuronal, and then it discusses empirical data suggesting that the brain’s activity is strongly aligned to its respective social (e.g., relation to others) and ecological (e.g., relation to the environment and nature) contexts; this implies a relational rather than reductionist model. Second, it suggests that self (e.g., the experience or sense of a self) and personhood (e.g., the person as existent independent of experience) must also be understood in such a social and ecological and, therefore, relational and spatio-temporal sense. Ethical concepts like agency, therefore, cannot be limited solely to the person and brain, but must rather be understood in a relational and neuro-ecological/social way. Third, it discusses deep brain stimulation as a treatment that promotes enhancement. In sum, this chapter presents findings in neuroscience that carry major implications for our view of brain, mental features, psychiatric disorders, and ethical issues like agency, responsibility, and enhancement.


2018 ◽  
pp. 135-184
Author(s):  
Walter Glannon

This chapter discusses functional neurosurgery designed to modulate dysfunctional neural circuits mediating sensorimotor, cognitive, emotional, and volitional capacities. The chapter assesses the comparative benefits and risks of neural ablation and deep brain stimulation as the two most invasive forms of neuromodulation. It discusses the question of whether individuals with a severe or moderately severe psychiatric disorder have enough cognitive and emotional capacity to weigh reasons for and against ablation or deep brain stimulation and give informed consent to undergo it. The chapter also discusses the obligations of investigators conducting these trials to research subjects. In addition, it examines the medical and ethical justification for a sham control arm in psychiatric neurosurgery clinical trials. It considers the therapeutic potential of optogenetics as a novel form of neuromodulation. The fact that this technique manipulates both genetic material and neural circuits and has been tested only in animal models makes it unclear what its benefit–risk ratio would be. The chapter concludes with a brief discussion of the potential of neuromodulation to stimulate endogenous repair and growth mechanisms in the brain.


Author(s):  
Erwin B Montgomery, Jr

This second edition of the book continues the basic premise that a thorough knowledge of the mechanisms by which neurons respond to electrical stimulation, how to control the stimulation and the regional anatomy allows the Deep Brain Stimulation (DBS) programmer to effectively and efficiently help patients reach optimal control of their disorder. There are a great many variables that influence the patient’s response to DBS, such as the exact nature of the patient’s individual symptoms and disabilities and the variability of the surgical placement of stimulating leads. The complexity has expanded because rapid increases in technology, both current and anticipated. The book makes no assumptions as to the prior knowledge or expertise. As the brain fundamentally is an electrical device, the book begins explaining the relevant electronics, building a nearly intuitive knowledge of how electrons are affected by electrical and magnetic forces and how the actions of the programmer controls electrical charges that ultimately activate neurons, which themselves are electrical devices.


2017 ◽  
Vol 41 ◽  
pp. 58-65 ◽  
Author(s):  
Zheng-Dao Deng ◽  
Dian-you Li ◽  
Chen-cheng Zhang ◽  
Yi-Xin Pan ◽  
Jin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document