scholarly journals Global Simultaneous Optimization of Oil, Hysteretic and Inertial Dampers Using Real-Valued Genetic Algorithm and Local Search

2021 ◽  
Vol 7 ◽  
Author(s):  
Ryohei Uemura ◽  
Hiroki Akehashi ◽  
Kohei Fujita ◽  
Izuru Takewaki

A method for global simultaneous optimization of oil, hysteretic and inertial dampers is proposed for building structures using a real-valued genetic algorithm and local search. Oil dampers has the property that they can reduce both displacement and acceleration without significant change of natural frequencies and hysteretic dampers possess the characteristic that they can absorb energy efficiently and reduce displacement effectively in compensation for the increase of acceleration. On the other hand, inertial dampers can change (prolong) the natural periods with negative stiffness and reduce the effective input and the maximum acceleration in compensation for the increase of deformation. By using the proposed simultaneous optimization method, structural designers can select the best choice of these three dampers from the viewpoints of cost and performance indices (displacement, acceleration). For attaining the global optimal solution which cannot be attained by the conventional sensitivity-based approach, a method including a real-valued genetic algorithm and local search is devised. In the first stage, a real-valued genetic algorithm is used for searching an approximate global optimal solution. Then a local search procedure is activated for enhancing the optimal character of the solutions by reducing the total quantity of three types of dampers. It is demonstrated that a better design from the viewpoint of global optimality can be obtained by the proposed method and the preference of damper selection strongly depends on the design target (displacement, acceleration). Finally, a multi-objective optimization for the minimum deformation and acceleration is investigated.

2014 ◽  
Vol 889-890 ◽  
pp. 107-112
Author(s):  
Ji Ming Tian ◽  
Xin Tan

The design of the gearbox must ensure the simplest structure and the lightest weight under the premise of meeting the reliability and life expectancy. According to the requirement of wind turbine, an improved method combined dynamic penalty function with pseudo-parallel genetic algorithm is used to optimize gearbox. It takes the minimum volumes as object functions. It is showed that the ability to search the global optimal solution of improved genetic algorithm and less number of iterations. The global optimal solution is worked out quickly. The size parameters are optimized, as much as the driving stability and efficiency. To verify the feasibility of improved genetic algorithm, ring gear of the gearbox is analyzed. Static strength analysis shows that the optimization method is reasonable and effective.


2011 ◽  
Vol 268-270 ◽  
pp. 1184-1187 ◽  
Author(s):  
Zuo Yong Li ◽  
Chun Xue Yu ◽  
Lei Zang

The bee immune evolutionary algorithm was proposed in order to improve effectively the optimal ability of bee evolutionary genetic algorithm. In the evolutionary process of bee, the algorithm made on immune evolutionary iteration calculation, generate next-generation population, in the proportions of fitness values for the best individual and second-best individuals in each generation. Because the algorithm takes in the neighborhood of space search as well out the neighborhood of space search for the some optimal individuals, meanwhile, with iterative numbers increase, capability of local search can be strengthened gradually; the bee immune evolutionary algorithm can approach the global optimal solution with higher accuracy. The calculated results for typical best functions show that the bee immune evolutionary algorithm has better optimal capability and stability.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjin Liu ◽  
Xihong Chen ◽  
Yu Zhao

A prototype filter design for FBMC/OQAM systems is proposed in this study. The influence of both the channel estimation and the stop-band energy is taken into account in this method. An efficient preamble structure is proposed to improve the performance of channel estimation and save the frequency spectral efficiency. The reciprocal of the signal-to-interference plus noise ratio (RSINR) is derived to measure the influence of the prototype filter on channel estimation. After that, the process of prototype filter design is formulated as an optimization problem with constraint on the RSINR. To accelerate the convergence and obtain global optimal solution, an improved genetic algorithm is proposed. Especially, the History Network and pruning operator are adopted in this improved genetic algorithm. Simulation results demonstrate the validity and efficiency of the prototype filter designed in this study.


2014 ◽  
Vol 556-562 ◽  
pp. 4014-4017
Author(s):  
Lei Ding ◽  
Yong Jun Luo ◽  
Yang Yang Wang ◽  
Zheng Li ◽  
Bing Yin Yao

On account of low convergence of the traditional genetic algorithm in the late,a hybrid genetic algorithm based on conjugate gradient method and genetic algorithm is proposed.This hybrid algorithm takes advantage of Conjugate Gradient’s certainty, but also the use of genetic algorithms in order to avoid falling into local optimum, so it can quickly converge to the exact global optimal solution. Using Two test functions for testing, shows that performance of this hybrid genetic algorithm is better than single conjugate gradient method and genetic algorithm and have achieved good results.


2013 ◽  
Vol 347-350 ◽  
pp. 3242-3246
Author(s):  
Zhe Feng Zhu ◽  
Xiao Bin Hui ◽  
Yi Qian Cao ◽  
Wan Xiang Lian

The traditional K-means clustering algorithm has the disadvantage of weakness in overall search, easily falling into local optimization, highly reliance on initial clustering center. Aiming at the drawback of falling into partial optimization, putting forward a modified K-means algorithm mixing GA and SA, which combined the advantages of global search ability of GA and local search, to avoid K-means algorithm to lost into local optimal solution. The results of simulation show that the performance of above-mentioned algorithm is better in the optimization capacity than before, and easier to get the global optimal solution. It is an effective algorithm.


2010 ◽  
Vol 40-41 ◽  
pp. 488-493
Author(s):  
Yong Sun ◽  
Mao Rui Zhang ◽  
Wei Wei Liu ◽  
Li Na Zhang ◽  
He Li

The genetic algorithm based on permutation distance definition is used to solve the laser antimissile system. When faced with multiple attacking targets, it is clearly important for the laser antimissile system to determine the sequence of the attacking targets to be intercepted so that the maximum attacking targets are destroyed. It’s very difficult to find the global optimal solution, especially when the number of the targets is greater than six. The permutation distance definition is introduced to measure the distribution of the population. The successive zeros permutation distance is to stop the genetic algorithm iterations. Finally, taking ten targets as an example, the simulation results show that the convergence of the algorithm is fast and this achievement can be used in the real application.


2014 ◽  
Vol 687-691 ◽  
pp. 1548-1551
Author(s):  
Li Jiang ◽  
Gang Feng Yan ◽  
Zhen Fan

Aiming at the bad performance when achieve rich colors of fabric with very limited yarns in the traditional woven industry, the paper comes up with a solution of selecting yarn from a set of yarns based on SAGA(simulated annealing genetic algorithm). In order to reduce the computational complexity, original image is compressed based on clustering algorithm. And the original yarns is divided into four regions based on color separation algorithm to narrow the feasible area. The result of experiments show that image compression and yarns division can greatly improve the speed of SAGA, and SAGA can effectively converges to global optimal solution.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3442-3445 ◽  
Author(s):  
Yan Hua Guo ◽  
Fei Fei Liu ◽  
Ning Zhang ◽  
Tao Wang

The mathematic model of a two-bar truss is built in MATLAB and the analysis is carried out by the genetic algorithm toolbox. The parametric model of the planar truss is established by the ANSYS Parametric Design Language. Solutions are obtained using the first-order method native. Genetic algorithms don’t always display better properties than others. Finally, a joint optimization method is proposed, which combines MATLAB genetic algorithm toolbox and the numerical algorithm based on the quasi-Newton method. The method is identified through the numerical example of the two-bar truss. The results indicate the joint optimization method can always converge to the global optimal solution.


Author(s):  
Miao Zhuang ◽  
Ali A. Yassine

Resources for development projects are often scarce in the real world. Generally, many projects are to be completed that rely on a common pool of resources. Besides resource constraints, there exists data dependency among tasks within each project. A genetic algorithm approach with one-point uniform crossover and a refresh operator is proposed to minimize the overall duration or makespan of multiple projects in a resource constrained multi project scheduling problem (RCMPSP) without violating inter-project resource constraints or intra-project precedence constraints. The proposed GA incorporates stochastic feedback or rework of tasks. It has the capability of capturing the local optimum for each generation and therefore ensuring a global best solution. The proposed Genetic Algorithm, with several variants of GA parameters is tested on sample scheduling problems with and without stochastic feedback. This algorithm demonstrates to provide a quick convergence to a global optimal solution and detect the most likely makespan range for parallel projects of tasks with stochastic feedback.


2012 ◽  
Vol 482-484 ◽  
pp. 1636-1639
Author(s):  
Yuan Yao ◽  
Yan Ling Zou ◽  
Qi Man Wu ◽  
Zhong Ren Guan

In order to make full use of chaotic mutation genetic algorithm and the chaotic mutation and bee evolution algorithm, the characteristics of the two algorithms, and the combination of chaotic mutation bee evolution algorithm is proposed. The algorithm in bee evolution process, to adapt to the value of group of smaller portions of the variation of individuals to chaos; to adapt to the value of group of large part of the individual, to the best individual as the center, change crossover operation, each generation is the best individual immune evolutionary iterative calculation. Thus, as the iteration, the algorithm not only fast convergence, and can also by a higher accuracy by the global optimal solution.


Sign in / Sign up

Export Citation Format

Share Document