scholarly journals Alpha/Beta Hydrolase Domain-Containing Protein 2 Regulates the Rhythm of Follicular Maturation and Estrous Stages of the Female Reproductive Cycle

Author(s):  
Ida Björkgren ◽  
Dong Hwa Chung ◽  
Sarah Mendoza ◽  
Liliya Gabelev-Khasin ◽  
Natalie T. Petersen ◽  
...  

Mammalian female fertility is defined by a successful and strictly periodic ovarian cycle, which is under the control of gonadotropins and steroid hormones, particularly progesterone and estrogen. The latter two are produced by the ovaries that are engaged in controlled follicular growth, maturation, and release of the eggs, i.e., ovulation. The steroid hormones regulate ovarian cycles via genomic signaling, by altering gene transcription and protein synthesis. However, despite this well-studied mechanism, steroid hormones can also signal via direct, non-genomic action, by binding to their membrane receptors. Here we show, that the recently discovered membrane progesterone receptor α/β hydrolase domain-containing protein 2 (ABHD2) is highly expressed in mammalian ovaries where the protein plays a novel regulatory role in follicle maturation and the sexual cycle of females. Ablation of Abhd2 caused a dysregulation of the estrous cycle rhythm with females showing shortened luteal stages while remaining in the estrus stage for a longer time. Interestingly, the ovaries of Abhd2 knockout (KO) females resemble polycystic ovary morphology (PCOM) with a high number of atretic antral follicles that could be rescued with injection of gonadotropins. Such a procedure also allowed Abhd2 KO females to ovulate a significantly increased number of mature and fertile eggs in comparison with their wild-type littermates. These results suggest a novel regulatory role of ABHD2 as an important factor in non-genomic steroid regulation of the female reproductive cycle.

2019 ◽  
Author(s):  
Ida Björkgren ◽  
Dong Hwa Chung ◽  
Sarah Mendoza ◽  
Liliya Gabelev-Khasin ◽  
Andrew Modzelewski ◽  
...  

AbstractTherian female fertility is defined by a successful and strictly periodic ovarian cycle, which is under the control of gonadotropins and steroid hormones, particularly progesterone and estrogen. The latter two are produced by the ovaries that are engaged in controlled follicular growth, maturation and release of the eggs, i.e. ovulation. It is well known that steroid hormones regulate ovarian cycles via genomic signaling, by altering gene transcription and protein synthesis. However, despite this well-studied mechanism, steroid hormones can also signal via direct, non-genomic action, by binding to their membrane receptors. Here we show, that the recently discovered sperm membrane progesterone receptor α/β hydrolase domain-containing protein 2 (ABHD2) is highly expressed in mammalian ovaries where the protein plays a novel regulatory role in follicle maturation and the sexual cycle of females. Ablation ofAbhd2caused a dysregulation of the estrous cycle rhythm with females showing shortened luteal stages while remaining in the estrus stage for a longer time. Interestingly, the ovaries ofAbhd2knockout (KO) females resemble polycystic ovary morphology with a high number of atretic antral follicles that could be rescued with injection of gonadotropins. Such a procedure also allowedAbhd2KO females to ovulate a significantly increased number of mature and fertile eggs in comparison to their wild-type littermates. These results suggest a novel regulatory role of ABHD2 as an important factor in non-genomic steroid regulation of the female reproductive cycle.


Author(s):  
Zora Lazúrová ◽  
Jana Figurová ◽  
Beáta Hubková ◽  
Jana Mašlanková ◽  
Ivica Lazúrová

Abstract Objectives There is a growing evidence indicating an impact of endocrine distrupting chemicals such as bisphenol A (BPA) on human reproduction. Its higher levels in serum or urine have been documented in women with polycystic ovary syndrome (PCOS), however the relationship to ovarian steroidogenesis remains unclear. Aim of the study was to compare urinary BPA (U-BPA) concentrations among PCOS women and control group. Second aim was to assess the relationship of U-BPA to ovarian steroidogenesis in the group with PCOS. Methods Eighty six Caucasian women (age 28.5 ± 5.1 years) diagnosed with PCOS and 32 controls of age 24.9 ± 4.4 years were included in the study. Fasting blood samples were analyzed for biochemical parameters and steroid hormones. U-BPA was measured in the morning urine sample using high pressure liquid chromatography. Results PCOS women had significantly higher U-BPA as compared with control group (p=0.0001). Those with high levels of U-BPA (U-BPA ≥2.14 ug/g creatinine) demonstrated higher serum insulin (p=0.029) and HOMA IR (p=0.037), lower serum estrone (p=0.05), estradiol (p=0.0126), FSH (p=0.0056), and FAI (p=0.0088), as compared with low-BPA group (U- BPA <2.14 ug/g creatinine). In PCOS women, U-BPA positively correlated with age (p=0.0026; R2=0.17), negatively with estradiol (p=0.0001, R2=0.5), testosterone (p=0.0078, R2=0.15), free-testosterone (p=0.0094, R2=0.12) and FAI (p=0.0003, R2=0.32), respectively. Conclusions PCOS women have significantly higher U-BPA concentrations than healthy controls. U-BPA positively correlates with age and negatively with ovarian steroid hormones suggesting a possible suppressive effect of bisphenol A on ovarian steroidogenesis.


2005 ◽  
Vol 20 (9) ◽  
pp. 2402-2408 ◽  
Author(s):  
Suhail A.R. Doi ◽  
Mona Al-Zaid ◽  
Philip A. Towers ◽  
Christopher J. Scott ◽  
Kamal A.S. Al-Shoumer

Copeia ◽  
1976 ◽  
Vol 1976 (2) ◽  
pp. 256 ◽  
Author(s):  
Dennis Jacob ◽  
L. S. Ramaswami

2016 ◽  
Vol 65 (1) ◽  
pp. 59-64
Author(s):  
Alexander V. Sirotkin ◽  
Marta Oravcová ◽  
Jaroslav SlamečKA ◽  
Abdel Halim Harrath ◽  
Matúš RajskÝ

Sign in / Sign up

Export Citation Format

Share Document