scholarly journals ZDHHC11 Positively Regulates NF-κB Activation by Enhancing TRAF6 Oligomerization

Author(s):  
Enping Liu ◽  
Jiawei Sun ◽  
Jing Yang ◽  
Lin Li ◽  
Qili Yang ◽  
...  

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a RING domain ubiquitin ligase that plays an important role in nuclear factor-κB (NF-κB) signaling by regulating activation of the TAK1 and IKK complexes. However, the molecular mechanisms that regulate TRAF6 E3 activity remain unclear. Here, we found that ZDHHC11, a member of the DHHC palmitoyl transferase family, functions as a positive modulator in NF-κB signaling. ZDHHC11 overexpression activated NF-κB, whereas ZDHHC11 deficiency impaired NF-κB activity stimulated by IL-1β, LPS, and DNA virus infection. Furthermore, Zdhhc11 knockout mice had a lower level of serum IL6 upon treatment with LPS and D-galactosamine or HSV-1 infection than control mice. Mechanistically, ZDHHC11 interacted with TRAF6 and then enhanced TRAF6 oligomerization, which increased E3 activity of TRAF6 for synthesis of K63-linked ubiquitination chains. Collectively, our study indicates that ZDHHC11 positively regulates NF-κB signaling by promoting TRAF6 oligomerization and ligase activity, subsequently activating TAK1 and IKK complexes.

1998 ◽  
Vol 187 (12) ◽  
pp. 2097-2101 ◽  
Author(s):  
Marta Muzio ◽  
Gioacchino Natoli ◽  
Simona Saccani ◽  
Massimo Levrero ◽  
Alberto Mantovani

The human homologue of Drosophila Toll (hToll) is a recently cloned receptor of the interleukin 1 receptor (IL-1R) superfamily, and has been implicated in the activation of adaptive immunity. Signaling by hToll is shown to occur through sequential recruitment of the adapter molecule MyD88 and the IL-1R–associated kinase. Tumor necrosis factor receptor–activated factor 6 (TRAF6) and the nuclear factor κB (NF-κB)–inducing kinase (NIK) are both involved in subsequent steps of NF-κB activation. Conversely, a dominant negative version of TRAF6 failed to block hToll-induced activation of stress-activated protein kinase/c-Jun NH2-terminal kinases, thus suggesting an early divergence of the two pathways.


Sign in / Sign up

Export Citation Format

Share Document