scholarly journals Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities

2019 ◽  
Vol 7 ◽  
Author(s):  
Maha Thafar ◽  
Arwa Bin Raies ◽  
Somayah Albaradei ◽  
Magbubah Essack ◽  
Vladimir B. Bajic
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jooyong Shim ◽  
Zhen-Yu Hong ◽  
Insuk Sohn ◽  
Changha Hwang

AbstractIdentifying novel drug–target interactions (DTIs) plays an important role in drug discovery. Most of the computational methods developed for predicting DTIs use binary classification, whose goal is to determine whether or not a drug–target (DT) pair interacts. However, it is more meaningful but also more challenging to predict the binding affinity that describes the strength of the interaction between a DT pair. If the binding affinity is not sufficiently large, such drug may not be useful. Therefore, the methods for predicting DT binding affinities are very valuable. The increase in novel public affinity data available in the DT-related databases enables advanced deep learning techniques to be used to predict binding affinities. In this paper, we propose a similarity-based model that applies 2-dimensional (2D) convolutional neural network (CNN) to the outer products between column vectors of two similarity matrices for the drugs and targets to predict DT binding affinities. To our best knowledge, this is the first application of 2D CNN in similarity-based DT binding affinity prediction. The validation results on multiple public datasets show that the proposed model is an effective approach for DT binding affinity prediction and can be quite helpful in drug development process.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Tong He ◽  
Marten Heidemeyer ◽  
Fuqiang Ban ◽  
Artem Cherkasov ◽  
Martin Ester

2019 ◽  
Vol 25 (31) ◽  
pp. 3339-3349 ◽  
Author(s):  
Indrani Bera ◽  
Pavan V. Payghan

Background: Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. Objective: The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. Method: This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. Results: This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. Conclusion: The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.


2021 ◽  
Vol 15 ◽  
pp. 117793222110091
Author(s):  
Badreddine Nouadi ◽  
Abdelkarim Ezaouine ◽  
Mariame El Messal ◽  
Mohamed Blaghen ◽  
Faiza Bennis ◽  
...  

The emerging pathogen SARS-CoV2 causing coronavirus disease 2019 (COVID-19) is a global public health challenge. To the present day, COVID-19 had affected more than 40 million people worldwide. The exploration and the development of new bioactive compounds with cost-effective and specific anti-COVID 19 therapeutic power is the prime focus of the current medical research. Thus, the exploitation of the molecular docking technique has become essential in the discovery and development of new drugs, to better understand drug-target interactions in their original environment. This work consists of studying the binding affinity and the type of interactions, through molecular docking, between 54 compounds from Moroccan medicinal plants, dextran sulfate and heparin (compounds not derived from medicinal plants), and 3CLpro-SARS-CoV-2, ACE2, and the post fusion core of 2019-nCoV S2 subunit. The PDB files of the target proteins and prepared herbal compounds (ligands) were subjected for docking to AutoDock Vina using UCSF Chimera, which provides a list of potential complexes based on the criteria of form complementarity of the natural compound with their binding affinities. The results of molecular docking revealed that Taxol, Rutin, Genkwanine, and Luteolin-glucoside have a high affinity with ACE2 and 3CLpro. Therefore, these natural compounds can have 2 effects at once, inhibiting 3CLpro and preventing recognition between the virus and ACE2. These compounds may have a potential therapeutic effect against SARS-CoV2, and therefore natural anti-COVID-19 compounds.


2019 ◽  
Vol 14 (5) ◽  
pp. 432-445 ◽  
Author(s):  
Muniba Faiza ◽  
Khushnuma Tanveer ◽  
Saman Fatihi ◽  
Yonghua Wang ◽  
Khalid Raza

Background: MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional level through complementary base pairing with the target mRNA, leading to mRNA degradation and blocking translation process. Many dysfunctions of these small regulatory molecules have been linked to the development and progression of several diseases. Therefore, it is necessary to reliably predict potential miRNA targets. Objective: A large number of computational prediction tools have been developed which provide a faster way to find putative miRNA targets, but at the same time, their results are often inconsistent. Hence, finding a reliable, functional miRNA target is still a challenging task. Also, each tool is equipped with different algorithms, and it is difficult for the biologists to know which tool is the best choice for their study. Methods: We analyzed eleven miRNA target predictors on Drosophila melanogaster and Homo sapiens by applying significant empirical methods to evaluate and assess their accuracy and performance using experimentally validated high confident mature miRNAs and their targets. In addition, this paper also describes miRNA target prediction algorithms, and discusses common features of frequently used target prediction tools. Results: The results show that MicroT, microRNA and CoMir are the best performing tool on Drosopihla melanogaster; while TargetScan and miRmap perform well for Homo sapiens. The predicted results of each tool were combined in order to improve the performance in both the datasets, but any significant improvement is not observed in terms of true positives. Conclusion: The currently available miRNA target prediction tools greatly suffer from a large number of false positives. Therefore, computational prediction of significant targets with high statistical confidence is still an open challenge.


2019 ◽  
Vol 20 (6) ◽  
pp. 492-494 ◽  
Author(s):  
Qi Zhao ◽  
Haifan Yu ◽  
Mingxuan Ji ◽  
Yan Zhao ◽  
Xing Chen

In the medical field, drug-target interactions are very important for the diagnosis and treatment of diseases, they also can help researchers predict the link between biomolecules in the biological field, such as drug-protein and protein-target correlations. Therefore, the drug-target research is a very popular study in both the biological and medical fields. However, due to the limitations of manual experiments in the laboratory, computational prediction methods for drug-target relationships are increasingly favored by researchers. In this review, we summarize several computational prediction models of the drug-target connections during the past two years, and briefly introduce their advantages and shortcomings. Finally, several further interesting research directions of drug-target interactions are listed.


Sign in / Sign up

Export Citation Format

Share Document