scholarly journals Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells—Impact of Inorganic Fraction

2020 ◽  
Vol 8 ◽  
Author(s):  
Olga Mazuryk ◽  
Grazyna Stochel ◽  
Małgorzata Brindell

Air pollution is associated with numerous negative effects on human health. The toxicity of organic components of air pollution is well-recognized, while the impact of their inorganic counterparts in the overall toxicity is still a matter of various discussions. The influence of airborne particulate matter (PM) and their inorganic components on biological function of human alveolar-like epithelial cells (A549) was investigated in vitro. A novel treatment protocol based on covering culture plates with PM allowed increasing the studied pollutant concentrations and prolonging their incubation time without cell exposure on physical suffocation and mechanical disturbance. PM decreased the viability of A549 cells and disrupted their mitochondrial membrane potential and calcium homeostasis. For the first time, the difference in the reactive oxygen species (ROS) profiles generated by organic and inorganic counterparts of PM was shown. Singlet oxygen generation was observed only after treatment of cells with inorganic fraction of PM, while hydrogen peroxide, hydroxyl radical, and superoxide anion radical were induced after exposure of A549 cells to both PM and their inorganic fraction.

2009 ◽  
Vol 4 (1) ◽  
pp. 17 ◽  
Author(s):  
Martha Sierra-Vargas ◽  
Alberto Guzman-Grenfell ◽  
Salvador Blanco-Jimenez ◽  
Jose Sepulveda-Sanchez ◽  
Rosa Bernabe-Cabanillas ◽  
...  

2009 ◽  
Vol 297 (1) ◽  
pp. L109-L114 ◽  
Author(s):  
Marco van der Toorn ◽  
Delaram Rezayat ◽  
Henk F. Kauffman ◽  
Stephan J. L. Bakker ◽  
Rijk O. B. Gans ◽  
...  

Reactive oxygen species (ROS) present in cigarette smoke (CS) are thought to contribute to the development of COPD. Although CS-ROS can hardly enter airway epithelial cells, and certainly not the circulation, systemic levels of ROS have been found to be elevated in COPD patients. We hypothesize that lipophilic components present in CS can enter airway epithelial cells and increase intracellular ROS production by disturbing mitochondrial function. Different airway epithelial cells were exposed to CS extract (CSE), hexane-treated CSE (CSE without lipophilic components), gaseous-phase CS, and water-filtered CS (gaseous-phase CS without ROS). Mitochondrial membrane potential (Δψm) and ATP levels were assessed using the bronchial epithelial cell line Beas-2b. ROS generation measured directly by DCF fluorescence and indirectly by measuring free thiol groups (-SH) upon exposure to CS was assessed using lung alveolar epithelial cells devoid of functional mitochondria (A549-ρ0), with normal A549 cells serving as controls. In Beas-2b cells, CSE (4 h) caused a dose-dependent decrease in Δψm and ATP levels, whereas hexane-treated CSE did not. DCF fluorescence in A549 cells increased in response to CSE, whereas this was not the case in A549-ρ0 cells. Exposure of A549 cells to CS resulted in a rapid decrease in free -SH, whereas exposure to ROS-depleted CS only resulted in a delayed decrease. This delayed decrease was less pronounced in A549-ρ0 cells. Lipophilic components in CS disturb mitochondrial function, which contributes to increased intracellular generation of ROS. Our results are of importance in understanding the systemic effects of smoking observed in patients with COPD.


2004 ◽  
Vol 287 (6) ◽  
pp. L1199-L1206 ◽  
Author(s):  
Yuko Arita ◽  
Ansamma Joseph ◽  
Hshi-Chi Koo ◽  
Yuchi Li ◽  
Thomas A. Palaia ◽  
...  

Bacterial infection of the tracheobronchial tree is a frequent, serious complication in patients receiving treatment with oxygen and mechanical ventilation, resulting in increased morbidity and mortality. Using human airway epithelial cell culture models, we examined the effect of hyperoxia on bacterial adherence and the expression of interleukin-8 (IL-8), an important mediator involved in the inflammatory process. A 24-h exposure to 95% O2increased Pseudomonas aeruginosa (PA) adherence 57% in A549 cells ( P < 0.01) and 115% in 16HBE cells ( P < 0.01) but had little effect on Staphylococcus aureus (SA) adherence. Exposure to hyperoxia, followed by a 1-h incubation with SA, further enhanced PA adherence ( P < 0.01), suggesting that hyperoxia and SA colonization may enhance the susceptibility of lung epithelial cells to gram-negative infections. IL-8 expression was also increased in cells exposed to both hyperoxia and PA. Stable or transient overexpression of manganese superoxide dismutase reduced both basal and stimulated levels of PA adherence and IL-8 levels in response to exposure to either hyperoxia or PA. These data indicate that hyperoxia increases susceptibility to infection and that the pathways are mediated by reactive oxygen species. Therapeutic intervention strategies designed to prevent accumulation of intracellular reactive oxygen species may reduce opportunistic pulmonary infections.


Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Dong Chang Lee ◽  
Jeong-Min Oh ◽  
Hyunsu Choi ◽  
Sung Won Kim ◽  
Soo Whan Kim ◽  
...  

Background: Eupatilin is an active flavon extracted from the Artemisia species and has properties such as antioxidant, anti-inflammatory, and anti-cancer. We examined the effect of eupatilin using fine particulate matter (FPM) and human bronchial epithelial cell line (BEAS-2B) to confirm the potential of eupatilin as a therapeutic agent for respiratory diseases caused by FPM. Methods: Reactive oxygen species (ROS) levels were checked by flow cytometry to identify if FPM and eupatilin affect ROS production. Western blotting was performed to identify the mechanism of action of eupatilin in FPM-exposed BEAS-2B cells. Results: When cells were exposed to FPM above 12.5 μg/mL concentration for 24 h, ROS production increased significantly compared to the control. When eupatilin was added to cells exposed to FPM, the ROS level decreased proportionally with the eupatilin dose. The phosphorylation of Akt, NF-κB p65, and p38 MAPK induced by FPM was significantly reduced by eupatilin, respectively. Conclusion: FPM cause respiratory disease by producing ROS in bronchial epithelial cells. Eupatilin has been shown to inhibit ROS production through altering signaling pathways. The ROS inhibiting property of eupatilin can be exploited in FPM induced respiratory disorders.


2021 ◽  
Vol 22 (2) ◽  
pp. 567
Author(s):  
Brixhilda Domi ◽  
Kapil Bhorkar ◽  
Carlos Rumbo ◽  
Labrini Sygellou ◽  
Spyros N. Yannopoulos ◽  
...  

Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200–300 nm for BN-PL and 100–150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.


Sign in / Sign up

Export Citation Format

Share Document