scholarly journals Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny

Author(s):  
Anita Leocadio Freitas-Mesquita ◽  
André Luiz Araújo Dos-Santos ◽  
José Roberto Meyer-Fernandes

In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.

2013 ◽  
Vol 81 (7) ◽  
pp. 2507-2517 ◽  
Author(s):  
Chaoqun Yao ◽  
Upasna Gaur Dixit ◽  
Jason H. Barker ◽  
Lynn M. Teesch ◽  
Laurie Love-Homan ◽  
...  

ABSTRACTThe infectious metacyclic promastigotes ofLeishmaniaprotozoa establish infection in a mammalian host after they are deposited into the dermis by a sand fly vector. SeveralLeishmaniavirulence factors promote infection, including the glycosylphosphatidylinositol membrane-anchored major surface protease (MSP). MetacyclicLeishmania infantum chagasipromastigotes were treated with methyl-beta-cyclodextrin (MβCD), a sterol-chelating reagent, causing a 3-fold reduction in total cellular sterols as well as enhancing MSP release without affecting parasite viabilityin vitro. MβCD-treated promastigotes were more susceptible to complement-mediated lysis than untreated controls and reduced the parasite load 3-fold when inoculated into BALB/c mice. Paradoxically, MβCD-treated promastigotes caused a higher initialin vitroinfection rate in human or murine macrophages than untreated controls, although their intracellular multiplication was hindered upon infection establishment. There was a corresponding larger amount of covalently bound C3b than iC3b on the parasite surfaces of MβCD-treated promastigotes exposed to healthy human serumin vitro, as well as loss of MSP, a protease that enhances C3b cleavage to iC3b. Mass spectrometry showed that MβCD promotes the release of proteins into the extracellular medium, including both MSP and MSP-like protein (MLP), from virulent metacyclic promastigotes. These data support the hypothesis that plasma membrane sterols are important for the virulence ofLeishmaniaprotozoa at least in part through retention of membrane virulence proteins.


mBio ◽  
2017 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehud Inbar ◽  
V. Keith Hughitt ◽  
Laura A. L. Dillon ◽  
Kashinath Ghosh ◽  
Najib M. El-Sayed ◽  
...  

ABSTRACT The life cycle of the Leishmania parasite in the sand fly vector involves differentiation into several distinctive forms, each thought to represent an adaptation to specific microenvironments in the midgut of the fly. Based on transcriptome sequencing (RNA-Seq) results, we describe the first high-resolution analysis of the transcriptome dynamics of four distinct stages of Leishmania major as they develop in a natural vector, Phlebotomus duboscqi. The early transformation from tissue amastigotes to procyclic promastigotes in the blood-fed midgut was accompanied by the greatest number of differentially expressed genes, including the downregulation of amastins, and upregulation of multiple cell surface proteins, sugar and amino acid transporters, and genes related to glucose metabolism and cell cycle progression. The global changes accompanying post-blood meal differentiation of procyclic promastigotes to the nectomonad and metacyclic stages were less extensive, though each displayed a unique signature. The transcriptome of nectomonads, which has not been studied previously, revealed changes consistent with cell cycle arrest and the upregulation of genes associated with starvation and stress, including autophagic pathways of protein recycling. Maturation to the infective, metacyclic stage was accompanied by changes suggesting preadaptation to the intracellular environment of the mammalian host, demonstrated by the amastigote-like profiles of surface proteins and metabolism-related genes. Finally, a direct comparison between sand fly-derived and culture-derived metacyclics revealed a reassuring similarity between the two forms, with the in vivo forms distinguished mainly by a stronger upregulation of transcripts associated with nutrient stress. IMPORTANCE The life cycle of Leishmania parasites in the sand fly vector includes their growth and development as morphologically distinct forms of extracellular promastigotes found within the different microenvironments of the gut. Based on RNA-Seq, we provide here the first high-resolution, transcriptomic analysis of Leishmania insect stages during their cyclical development in vivo, from tissue amastigotes ingested with the blood meal to infective, metacyclic promastigotes that initiate infection in the mammalian host. The most extensive genetic reprogramming occurred during the early transformation of amastigotes to rapidly dividing procyclic promastigotes in the blood-fed midgut, with major changes in the abundance of mRNAs for surface proteins and metabolism. The post-blood meal-adapted nectomonad stage was characterized by the downregulation of cell cycle-related genes and the upregulation of stress- and starvation-related genes. Finally, the transcriptome of metacyclic promastigotes shifted to a more amastigote-like profile, suggesting their preadaptation to the intracellular host environment. IMPORTANCE The life cycle of Leishmania parasites in the sand fly vector includes their growth and development as morphologically distinct forms of extracellular promastigotes found within the different microenvironments of the gut. Based on RNA-Seq, we provide here the first high-resolution, transcriptomic analysis of Leishmania insect stages during their cyclical development in vivo, from tissue amastigotes ingested with the blood meal to infective, metacyclic promastigotes that initiate infection in the mammalian host. The most extensive genetic reprogramming occurred during the early transformation of amastigotes to rapidly dividing procyclic promastigotes in the blood-fed midgut, with major changes in the abundance of mRNAs for surface proteins and metabolism. The post-blood meal-adapted nectomonad stage was characterized by the downregulation of cell cycle-related genes and the upregulation of stress- and starvation-related genes. Finally, the transcriptome of metacyclic promastigotes shifted to a more amastigote-like profile, suggesting their preadaptation to the intracellular host environment.


2020 ◽  
Author(s):  
Roberto Marabini ◽  
Gabriela N. Condezo ◽  
Josué Gómez-Blanco ◽  
Carmen San Martín

AbstractLittle is known about the basic biology of non-human adenoviruses, which could be alternative vectors free of issues posed by preexisting immunity to human adenoviruses. We present the cryo-EM structure of a lizard atadenovirus, LAdV-2, at 3.4 Å resolution. This is the first high resolution structure of an adenovirus with non-mammalian host, and of an adenovirus not belonging to the Mastadenovirus genus. Atadenovirus capsids contain genus specific proteins LH3, p32k, and LH2, and are more thermostable than the more studied human adenoviruses. We find a large conformational difference in the internal vertex protein IIIa between mast- and atadenoviruses, induced by the presence of an extended polypeptide in the region. This polypeptide, as well as α-helical clusters located beneath the icosahedral facet, likely correspond to proteins LH2 and p32k. The external genus specific protein LH3, with a trimeric β-helix fold typical of bacteriophage host attachment proteins, contacts the hexon shell surface via a triskelion structure identical to that used by protein IX in human AdV, revealing a conserved capsid-binding motif and a possible gene duplication event. Altogether, this work shows how the network of minor coat proteins differs between AdV genera and relates to virus evolution and capsid stability properties.


2004 ◽  
Vol 10 (5) ◽  
pp. 656-661 ◽  
Author(s):  
Birgitta Rasmusson ◽  
Albert Descoteaux

Promastigotes of the protozoan parasite genusLeishmaniaare inoculated into a mammalian host when an infected sand fly takes a bloodmeal. Following their opsonization by complement, promastigotes are phagocytosed by macrophages. There, promastigotes differentiate into amastigotes, the form of the parasite that replicates in the phagolysosomal compartments of host macrophages. Although the mechanisms by which promastigotes survive the microbicidal consequence of phagocytosis remain, for the most part, to be elucidated, evidence indicates that glycoconjugates play a role in this process. One such glycoconjugate is lipophosphoglycan, an abundant promastigote surface glycolipid. Using quantitative electron and confocal laser scanning microscopy approaches, evidence was provided thatL. donovanipromastigotes inhibit phagolysosome biogenesis in a lipophosphoglycan-dependent manner. This inhibition correlates with an accumulation of periphagosomal F-actin, which may potentially form a physical barrier that preventsL. donovanipromastigote-containing phagosomes from interacting with endocytic vacuoles. Inhibition of phagosome maturation may constitute a strategy to provide an environment propitious to the promastigote-to-amastigote differentiation.


2019 ◽  
Vol 116 (16) ◽  
pp. 8028-8037 ◽  
Author(s):  
Sehoon Won ◽  
Salvatore Incontro ◽  
Yan Li ◽  
Roger A. Nicoll ◽  
Katherine W. Roche

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein phosphatase that regulates a variety of synaptic proteins, including NMDA receptors (NAMDRs). To better understand STEP’s effect on other receptors, we used mass spectrometry to identify the STEP61 interactome. We identified a number of known interactors, but also ones including the GluA2 subunit of AMPA receptors (AMPARs). We show that STEP61 binds to the C termini of GluA2 and GluA3 as well as endogenous AMPARs in hippocampus. The synaptic expression of GluA2 and GluA3 is increased in STEP-KO mouse brain, and STEP knockdown in hippocampal slices increases AMPAR-mediated synaptic currents. Interestingly, STEP61 overexpression reduces the synaptic expression and synaptic currents of both AMPARs and NMDARs. Furthermore, STEP61 regulation of synaptic AMPARs is mediated by lysosomal degradation. Thus, we report a comprehensive list of STEP61 binding partners, including AMPARs, and reveal a central role for STEP61 in differentially organizing synaptic AMPARs and NMDARs.


Parasitology ◽  
2009 ◽  
Vol 136 (8) ◽  
pp. 895-904 ◽  
Author(s):  
S. RATHAUR ◽  
R. RAI ◽  
E. SRIKANTH ◽  
S. SRIVASTAVA

SUMMARYSetaria cervi, a bovine filarial parasite contains significant acid phosphatase (AcP) activity in its various life stages. Two forms of AcP were separated from somatic extract of adult female parasite using cation exchange, gel filtration and concavalin affinity chromatography. One form having a molecular mass of 79 kDa was characterized as dual specific protein tyrosine phosphatase (ScDSP) based on substrate specificity and inhibition studies. With various substrates tested, it showed significant activity in the order of phospho-L-tyrosine>pNPP>ADP>phospho-L-serine. Inhibition by orthovanadate, fluoride, molybdate, and zinc ions further confirms protein tyrosine phosphatase nature of the enzyme. Km and Vmax determined with various substrates were found to be 16·66 mM, 25·0 μM/ml/min with pNPP; 20·0 mM, 40·0 μM/ml/min with phospho-L-tyrosine and 27·0 mM, 25·0 μM/ml/min with phospho-L-serine. KIwith pNPP and sodium orthovanadate (IC5033·0 μM) was calculated to be 50·0 mM. Inhibition with pHMB, silver nitrate, DEPC and EDAC suggested the presence of cysteine, histidine and carboxylate residues at its active site. Cross-reactivity withW. bancrofti-infected sera was demonstrated by Western blotting. ScDSP showed elevated levels of IgE in chronic filarial sera using ELISA. Underin vitroconditions, ScDSP resulted in increased effector function of human eosinophils when stimulated by IgG, which showed a further decrease with increasing enzyme concentration. Results presented here suggest thatS. cerviDSP should be further studied to determine its role in pathogenesis and the persistence of filarial parasite.


2017 ◽  
Vol 215 (8) ◽  
pp. 1285-1293 ◽  
Author(s):  
Joanna G. Valverde ◽  
Andrea Paun ◽  
Ehud Inbar ◽  
Audrey Romano ◽  
Michael Lewis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document