scholarly journals A Persistently Increasing Precipitation Trend Through the Holocene in Northwest China Recorded by Black Carbon δ13C From Sayram Lake

2020 ◽  
Vol 8 ◽  
Author(s):  
Qingfeng Jiang ◽  
Jianan Zheng ◽  
Yufeng Yang ◽  
Wenwei Zhao ◽  
Dongliang Ning
2018 ◽  
Author(s):  
Dimitri Osmont ◽  
Michael Sigl ◽  
Anja Eichler ◽  
Theo M. Jenk ◽  
Margit Schwikowski

Abstract. The Amazon Basin is one of the major contributors to global biomass burning emissions. However, regional paleofire trends remain partially unknown. Due to their proximity to the Amazon Basin, Andean ice cores are suitable to reconstruct paleofire trends in South America and improve our understanding of the complex linkages between fires, climate and humans. Here we present the first refractory black carbon (rBC) ice-core record from the Andes as a proxy for biomass burning emissions in the Amazon Basin, derived from an ice core drilled at 6300 m a.s.l. from Illimani glacier in the Bolivian Andes and spanning the entire Holocene back to the last deglaciation 13 000 years ago. The Illimani rBC record displays a strong seasonality with low values during the wet season and high values during the dry season due to the combination of enhanced biomass burning emissions in the Amazon Basin and less precipitation at the Illimani site. Significant positive (negative) correlations were found with reanalyzed temperature (precipitation) data, respectively, for regions in Eastern Bolivia and Western Brazil characterized by a substantial fire activity. rBC long-term trends indirectly reflect regional climatic variations through changing biomass burning emissions as they show higher (lower) concentrations during warm/dry (cold/wet) periods, respectively, in line with climate variations such as the Younger Dryas, the 8.2 ka event, the Holocene Climatic Optimum, the Medieval Warm Period or the Little Ice Age. The highest rBC concentrations of the entire record occurred during the Holocene Climatic Optimum between 7000 and 3000 BC, suggesting that this outstanding warm and dry period caused an exceptional biomass burning activity, unprecedented in the context of the past 13 000 years. Recent rBC levels, rising since 1730 AD in the context of increasing temperatures and deforestation, are similar to those of the Medieval Warm Period. No decrease was observed in the 20th century, in contradiction with the global picture (broken fire hockey stick hypothesis).


2014 ◽  
Vol 10 (3) ◽  
pp. 2293-2353 ◽  
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
N. Fischer ◽  
K. Haberkorn ◽  
S. Wagner ◽  
...  

Abstract. The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.


2019 ◽  
Vol 21 (12) ◽  
pp. 2058-2069 ◽  
Author(s):  
Qian Zhang ◽  
Zhenxing Shen ◽  
Yali Lei ◽  
Tian Zhang ◽  
Yaling Zeng ◽  
...  

Summer and winter fine particulate matter (PM2.5) samples were collected to provide insight into the seasonal variations of the optical properties and source profiles of PM2.5 black carbon (BC) and brown carbon (BrC) in Xi'an, China.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Junli Xu ◽  
Shiyin Liu ◽  
Wanqin Guo ◽  
Zhen Zhang ◽  
Junfeng Wei ◽  
...  

The Ili River originates in the Tian Shan Mountains of Northwest China before flowing into Kazakhstan and Lake Balkash. Melting snow and ice are its major contributors. We analyzed glacial changes in the upper Ili River basin between the 1960s and 2007/2009 using topographic maps and satellite imagery from a Landsat TM. The relationships between glacial changes and glacial size, topographic factors, and debris cover were examined. Our results found that total glacial area decreased by 485 ± 177.3 km2(24.2% ± 8.8%) during the study period, and there were no advancing glaciers. Additionally, 331 glaciers disappeared and 18 disintegrated into two or three smaller glaciers. This study demonstrated a linear relationship between glacial area change and elevation. Changes in glaciers smaller than 1 km2were affected by both glacial size and topographic factors, while larger ones were affected by size only. Area losses in debris-covered glaciers were smaller by 2.5% to 7.5% compared to clean ice of the same size in this basin. As in other glaciated regions, glacial retreat in the Ili River basin is attributed to global warming. The slightly increasing precipitation over the study period could not offset the ice melting.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Churchill Okonkwo ◽  
Belay Demoz ◽  
Sium Gebremariam

This study used trend, correlation, and wavelet analysis to characterize Lake Chad (LC) level fluctuations, river discharge, El Niño Southern Oscillation (ENSO), and precipitation regimes and their interrelationships. Linear correlation results indicate a negative association between ENSO and LC level, river discharge and precipitation. Trend analysis shows increasing precipitation in the Lake Chad Basin (LCB) but decreasing LC level. The mode of interannual variability in LC level, rainfall, and ENSO analyzed using wavelet analysis is dominated by 3-4-year periods. Results show that variability in ENSO could explain only 31% and 13% of variations in LC level at Kindjeria and precipitation in the northern LCB, respectively. The wavelet transform coherency (WTC) between LC level of the southern pool at Kalom and ENSO is statistically significant at the 95% confidence level and phase-locked, implying a cause-and-effect association. These strong coherencies coincide with the La Niña years with the exception of 1997-1998 El Niño events. The WTC shows strong covariance between increasing precipitation and LC level in the northern pool at a 2- to 4-year band and 3- to 4-year band localized from 1996 to 2010. Implications for water resource planning and management are discussed.


2015 ◽  
Vol 11 (2) ◽  
pp. 305-326 ◽  
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
N. Fischer ◽  
K. Haberkorn ◽  
S. Wagner ◽  
...  

Abstract. The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.


2019 ◽  
Vol 15 (2) ◽  
pp. 579-592 ◽  
Author(s):  
Dimitri Osmont ◽  
Michael Sigl ◽  
Anja Eichler ◽  
Theo M. Jenk ◽  
Margit Schwikowski

Abstract. The Amazon Basin is one of the major contributors to global biomass burning emissions. However, regional paleofire trends remain particularly unknown. Due to their proximity to the Amazon Basin, Andean ice cores are suitable to reconstruct paleofire trends in South America and improve our understanding of the complex linkages between fires, climate and humans. Here we present the first refractory black carbon (rBC) ice-core record from the Andes as a proxy for biomass burning emissions in the Amazon Basin, derived from an ice core drilled at 6300 m a.s.l. from the Illimani glacier in the Bolivian Andes and spanning the entire Holocene back to the last deglaciation 13 000 years ago. The Illimani rBC record displays a strong seasonality with low values during the wet season and high values during the dry season due to the combination of enhanced biomass burning emissions in the Amazon Basin and less precipitation at the Illimani site. Significant positive (negative) correlations were found with reanalyzed temperature (precipitation) data for regions in eastern Bolivia and western Brazil characterized by substantial fire activity. rBC long-term trends indirectly reflect regional climatic variations through changing biomass burning emissions as they show higher (lower) concentrations during warm–dry (cold–wet) periods, in line with climate variations such as the Younger Dryas, the 8.2 ka event, the Holocene Climatic Optimum, the Medieval Warm Period and the Little Ice Age. The highest rBC concentrations of the entire record occurred during the Holocene Climatic Optimum between 7000 and 3000 BCE, suggesting that this exceptionally warm and dry period caused high levels of biomass burning activity, unprecedented in the context of the past 13 000 years. Recent rBC levels, rising since 1730 CE in the context of increasing temperatures and deforestation, are similar to those of the Medieval Warm Period. No decrease in fire activity was observed in the 20th century, in contradiction to global biomass burning reconstructions based on charcoal data.


Sign in / Sign up

Export Citation Format

Share Document