scholarly journals Responses of Sediment Properties to Paleoclimatic Changes since the Holocene in Ancient Milan River Channel, Northwest China

Author(s):  
HuiLing Wang ◽  
Tursun Kasim ◽  
Aishajiang Aili
The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Boo-Keun Khim ◽  
Sunghan Kim ◽  
Yu-Hyeon Park ◽  
Jongmin Lee ◽  
Sangbeom Ha ◽  
...  

Various sediment properties, such as mean grain size, total organic carbon, total nitrogen, C/N ratio, CaCO3, and biogenic opal content, were analyzed for a box core (BC02; 45 cm long) and a gravity core (GC02; 628 cm long), which were collected from the western margin of the Hupo Trough located off the eastern coast of Korea. The study area has been affected by the East Korea Warm Current (EKWC), a branch of the Tsushima Warm Current (TWC). The analytical results obtained for BC02 and the upper part of GC02 were in agreement, affirming the core-top preservation of GC02. Based on the corrected calibrated AMS 14C dates, the sedimentation rate of GC02 changed abruptly at ~8.2 ka from ~4.0–10.2 cm/kyr in the lower part to ~56.6–91.0 cm/kyr in the middle to upper part. This corresponds to the lithologic change from sandy mud to mud sediments showing the mean grain size change from 6.9 to 46.0 μm. Diverse paleoceanographic proxies representing the surface water condition exhibited varying degree of change at ~8.2 ka, after which all the properties remain almost unchanged, implying stable and continuous depositional conditions following the complete development of the EKWC. Furthermore, it indicated that the sediment depositional conditions in the Hupo Trough in response to the EKWC might have stabilized at ~8.2 ka since the opening of the Korea Strait during the Holocene sea level rise. Moreover, microfossil data from previous studies on the establishment of the TWC in the East Sea (Japan Sea) support our interpretation that the sediment properties revealed the Holocene development of the EKWC in the Hupo Trough.


1995 ◽  
Vol 44 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Ian C. Wright ◽  
Matt S. McGlone ◽  
Campbell S. Nelson ◽  
Brad J. Pillans

AbstractPaleoceanographic and onshore paleoclimatic changes during the last 59,000 yr are established from three deep-sea sediment cores off northeast New Zealand using an integrated log of sediment texture, CaCO3 content, palynology, and planktonic and benthic foraminiferal δ18O and δ13C data, together with dated silicic tephras. These records from the isotopic stage 4-3 boundary to the present record northern New Zealand vegetation history, changes in a subsidiary equatorward flow of Circumpolar Deep Water, and sea-surface temperatures (SSTs) for subtropical water (STW) between latitudes 36°42′ and 35°51′S. Relative to the Holocene, isotopically derived SSTs record average changes of +2°C, -2°C, and -2°C for the 59,000-43,000, 43,000-24,000, and 24,000-12,000 yr time slices, respectively. The apparent +2°C warming for the 59,000-43,000 yr period is interpreted to reflect changes in the dominant depth habitat of Globigerina bulloides in response to upwelling. A -2°C cooling of SSTs during isotope stage 2 is interpreted, in part, to reflect upwelling of cool subsurface water resulting from strong and persistent westerly airflow across New Zealand, with the concomitant enhanced surface-water production of CaCO3. Onshore, vegetation consistent with these changes are recorded, with full conifer-hardwood forest prior to 43,000 yr, followed by a change to vegetation implying cooler and drier conditions between 43,000 and 12,000 yr, and a subsequent return to full forest during the Holocene. The sequence of biopelagic and hemipelagic sedimentation observed within these cores reflect oscillation of sea level about a threshold eustatic level that controls the transport of terrigenous detritus offshore. Local variations and interplay of the regional oceanography and morphology and tectonism of the continental shelf will dictate that, relative to present sea level, this threshold eustatic sea level will vary in depth, and hence age, along a continental margin. Data from the New Zealand region reveal an extremely steep meridional thermal gradient across the southern and central New Zealand region during the last glaciation with minor cooling of STW to the north, apart from localized nearshore upwelling zones, but pronounced cooling of subantarctic water to the south of the subtropical convergence zone.


1990 ◽  
Vol 33 (3) ◽  
pp. 360-376 ◽  
Author(s):  
Brian Huntley

AbstractThe degree of analogy between fossil and contemporary pollen spectra in Europe has been investigated using the chord-distance dissimilarity measure. No-analog pollen spectra represent vegetation without a modern analog and hence, by inference, represent macroclimatic conditions different from any occurring in the region today. Such spectra have minimum chord distances that exceed a threshold value assessed using contemporary samples from the same and different vegetation u units. Contoured maps of minimum chord distance portray the changing patterns of analogous and no-analog pollen spectra, and hence vegetation units, since 13,000 yr B.P. No-analog vegetation units have been extensive in some regions for much of the Holocene, persisting as recently as 1000 years ago in many areas. The chord-distance measure has also been used to explore the patterns, extent, and rates of change in European pollen spectra since 13,000 yr B.P. Pollen spectra changed rapidly during late-glacial and early Holocene times and during the last millennium. Paleoclimatic changes have brought about the major changes in the Holocene paleovegetation of Europe. Human impact upon European vegetation has obscured neither the contemporary relationship between pollen spectra and vegetation nor the climatically determined long-term changes of vegetation across the continent since 13,000 yr B.P.


2018 ◽  
Author(s):  
Jasper H. J. Candel ◽  
Maarten G. Kleinhans ◽  
Bart Makaske ◽  
Wim Z. Hoek ◽  
Cindy Quik ◽  
...  

Abstract. River channel patterns may alter due to changes in hydrological regime, related to changes in climate or land cover. Such changes are well documented for transitions between meandering and braiding rivers, whereas channel pattern changes between laterally stable and meandering rivers are poorly documented and understood. We identified a river that was laterally almost stable throughout the Holocene until the Late Middle Ages, after which large meanders formed at lateral migration rates of about 2 m yr−1. The lateral stability before the Late Middle Ages was proven using a combination of coring information, ground-penetrating radar (GPR), radiocarbon (14C) dating, and optically stimulated luminescence (OSL) dating. Our objective of this work is to identify the possible causes for the meander initiation. We carried out a unique reconstruction of bankfull discharge as a function of time, based on channel dimensions that were reconstructed from the scroll bar sequence using coring information and GPR data, combined with chronological constraints from historical maps and OSL dating. Empirical channel and bar pattern models were used to determine the potential for meandering and to identify the causes of meander initiation. Several potential causes were investigated, varying from discharge regime changes to increased sediment input. Our investigation shows that bankfull discharge was two to five times higher during the meandering phase compared to the laterally stable phase. This increase likely reflects climate changes related to the Little Ice Age and land use changes in the catchment, in particular as a result of peat reclamation and exploitation. We hypothesize that many low-energy meandering rivers were laterally stable during most of the Holocene, reflecting relatively low peak discharges during a stable climate and with limited human impact. However, channel deposits associated with such stable phases are poorly preserved, due to recent increase in dynamics of such systems. Considering the importance of climate and land use changes on the river channel pattern, successful river restoration requires an integral approach that includes scenarios of climate and land use changes in the catchment.


2011 ◽  
Vol 31 (13) ◽  
pp. 1336-1342 ◽  
Author(s):  
Shuqing Qiao ◽  
Xuefa Shi ◽  
Yoshiki Saito ◽  
Xiaoyan Li ◽  
Yonggui Yu ◽  
...  

The Holocene ◽  
2016 ◽  
Vol 27 (7) ◽  
pp. 976-986 ◽  
Author(s):  
So-Young Kim ◽  
Leonid Polyak ◽  
Irina Delusina

Two sediment cores from the Chukchi Sea margin north of Alaska were analyzed for palynological composition including terrestrial and aquatic palynomorphs. Based on 13 radiocarbon ages, the investigated sedimentary record represents most of the Holocene with a century to multidecadal age resolution. Three palynological zones were discriminated based on the abundance of major palynomorph groups (terrestrial and freshwater palynomorphs and dinoflagellate cysts) and composition of spore and pollen assemblages. They are interpreted in terms of depositional and paleoclimatic changes including predominance of redeposition by meltwater or sea ice in the early-Holocene, a strong input of contemporaneous material related to Pacific water advection culminating after ca. 6000 yr BP, and more subtle changes in the late-Holocene. It is concluded that depositional environments, such as current transportation and mixing, have an overall major control on palynomorph distribution. The climatic factors may have also played an important role in palynomorph abundance and composition, especially in the middle- to late-Holocene, when circulation changes were less dramatic than during the flooding of the Bering Strait and the shallow Chukchi Sea shelf. Comprehending these linkages requires a better knowledge of the Holocene vegetation history in the coastal areas of Alaska and Chukchi Peninsula.


1998 ◽  
Vol 50 (3) ◽  
pp. 230-239 ◽  
Author(s):  
Pankaj Srivastava ◽  
Bramha Parkash ◽  
Dilip K. Pal

Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite–kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000–6500 yr B.P. and 3800–? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400–4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.


2020 ◽  
pp. 1-13
Author(s):  
Xiaonan Zhang ◽  
Aifeng Zhou ◽  
Zhendong Huang ◽  
Chengbang An ◽  
Yongtao Zhao ◽  
...  

Abstract Winter half-year precipitation dominates variations in hydroclimatic conditions in North Xinjiang, but few researchers have focused on this very important aspect of the Holocene climate. Here we report multiproxy evidence of Holocene hydroclimate changes from the sediments of Wulungu Lake in North Xinjiang. The site is a closed terminal lake fed mainly by meltwater from snow and ice, and today the area is climatically dominated by the westerlies. Grain-size end-member analysis implies an important mode of variation that indicates a gradually increasing moisture trend, with superimposed centennial-scale variations, since 8000 cal yr BP. From 8000 to 5350 cal yr BP, a permanent lake developed, and the lake level gradually rose. Between 5350 and 500 cal yr BP, the moisture status increased rapidly, with the wettest climate occurring between 3200 and 500 cal yr BP. After 500 cal yr BP, the lake level fell. The trend of increasing Holocene wetness indicates a rising winter precipitation in North Xinjiang during the Holocene. This was due to an increase in upwind vapor concentrations caused by increased evaporation and strength of the westerlies, which were determined by the increasing boreal winter insolation and its latitudinal gradient.


Sign in / Sign up

Export Citation Format

Share Document