scholarly journals Growth Model and Tectonic Significance of the Guman Fold Along the Western Kunlun Mountain Front (Xinjiang, China) Derived From Terrace Deformation and Seismic Data

2020 ◽  
Vol 8 ◽  
Author(s):  
Jianhong Xu ◽  
Jie Chen ◽  
J. Ramón Arrowsmith ◽  
Tao Li ◽  
Boxuan Zhang ◽  
...  
2020 ◽  
Author(s):  
Christelle Guilbaud ◽  
Martine Simoes ◽  
Laurie Barrier ◽  
Jérôme Van der Woerd ◽  
Guillaume Baby ◽  
...  

<p>The Western Kunlun Range is a mountain range located at the northwestern boundary of the Tibetan Plateau, facing the Tarim Basin. Our previous combined structural and morphological investigations of the mountain front, nearby the city of Pishan where a Mw 6.4 earthquake occurred in 2015, revealed the existence of a duplex uplifting Cenozoic strata, in which only the most frontal blind ramp is presently active and slips at a probable rate of 2 to 2.5 mm/yr. Located ~100 km further east along the mountain front, the Hotan anticline seems to present a different structure from surface geology, as older strata from Mesozoic and Paleozoic outcrop. Additionally, some authors proposed that the deformation would be here accommodated by a large blind basement thrust sheet, in clear contrast with the duplexes documented further west.</p><p>To further document potential lateral variations in the structural style and how they may affect the kinematics of active deformation along the mountain front of the Western Kunlun, we carry out a structural and morphological analysis of the Hotan anticline. We build structural cross-sections based on seismic reflection profiles, and calculate the incremental uplift recorded by dated fluvial terraces to quantify shortening rates over the last ~300 kyr. Our analysis reveals that a duplex structure, located below the basement thrust sheet, presently accommodates active deformation at a rate of 0.5 to 2.5 mm/yr, with a preferred rate of ~1.6 to 2.3 mm/yr. In more detail, uplifted terraces reveal that all ramps of the duplex are active in the case of the Hotan anticline, while only the most frontal ramp is documented as active in the case of the Pishan anticline further west. These results indicate that the style and rate of active shortening are rather homogeneous all along the mountain front, in contrast with the first impression provided by surface geology. Moreover, the discrepancy between surface geology and active morphology reveals progressive structural changes over geological times, from a blind basement ramp to duplexes. However, in the details, active deformation still remains segmented as its partitioning on the various ramps of the duplexes is variable along strike.</p>


2020 ◽  
Author(s):  
Juzhi Hou

<p><strong><span>Knowledge of the alpine glacier mass fluctuations is a fundamental prerequisite for understanding glacier dynamics, projecting future glacier change, and assessing the availability of freshwater resources. The glaciers on the Tibetan Plateau (TP) are sources of water for most of the major Asian rivers and their fate remains unclear due to accurate estimates of glacier mass fluctuations are lacking over long time scales. Here, we used d</span><sup><span>18</span></sup><span>O record at a proglacial open lake as proxy to estimate the Holocene glacier mass fluctuations in the Western Kunlun Mountain (WKM) quantitatively and continuously. Relative to past decades, maximum WKM glacier mass loss (-28.62±25.76 Gt) occurred at 9.5-8.5 ka BP, and maximum glacier mass gain (24.53±25.02 Gt) occurred at 1.3~0.5 ka BP, the difference in WKM glacier mass between the two periods account for ~20% of the total glaciers. Long-term changes in glacier mass suggests the TP glaciers likely face severe threats at the current rates of global warming. </span></strong></p>


2019 ◽  
Vol 26 (12) ◽  
pp. 3420-3435
Author(s):  
Kun Ding ◽  
Ting Liang ◽  
Xiu-qing Yang ◽  
Yi Zhou ◽  
Yong-gang Feng ◽  
...  

2016 ◽  
Author(s):  
Yetang Wang ◽  
Shugui Hou ◽  
Wenling An ◽  
Hongxi Pang ◽  
Yaping Liu

Abstract. "Pamir–Karakoram–Western-Kunlun-Mountain (northwestern Tibetan Plateau) Glacier Anomaly" has been a topic of debate due to the balanced, or even slightly positive glacier mass budgets in the early 21st century. Here we focus on the evolution of glaciers on the western Kunlun Mountain and its comparison with those from other regions of the Tibetan Plateau. The possible driver for the glacier evolution is also discussed. Western Kunlun Mountain glaciers reduce in area by 0.12 % yr−1 from 1970s to 2007–2011. However, there is no significant area change after 1999. Averaged glacier thickness loss is 0.08 ± 0.09 m yr−1 from 1970s to 2000, which is in accordance with elevation change during the period 2003–2008 estimated by the ICESat laser altimetry measurements. These further confirm the anomaly of glaciers in this region. Slight glacier reduction over the northwestern Tibetan Plateau may result from more accumulation from increased precipitation in winter which to great extent protects it from mass reductions under climate warming during 1961–2000. Warming slowdown since 2000 happening at this region may further mitigate glacier mass reduction, especially for the early 21st century.


2021 ◽  
Author(s):  
Marios N. Miliorizos ◽  
Nicholas Reiss ◽  
Nikolaos S. Melis ◽  
William A.J. Rutter

<p>Decades of work has been completed on Variscan geology of the inner Bristol Channel and Severn Estuary, yet there are few structural models that correctly portray their regional framework. Many published charts loosely depict the positions, strikes and nature of the Variscan deformation front and its geometry across SE Wales. Thus, we correlate seismic data with coastal outcrop at appropriate scales and detail, to present a refined model for the front.</p><p>Coastal outcrops, in conjunction with known crustal-scale seismic data: BIRPS, SWAT and LISPB, are combined with archives of intermediate scale: wide-angle reflection, seismic refraction and reflection records. They justify a reinterpretation of the front and may explain the geometry and kinematics of its foreland. Using these data, we draw new sections from north Devon to South Wales showing the position of structural units, both Palaeozoic and Mesozoic, affected either directly by thrusts, folds and disturbances or indirectly through structural inheritance during reactivation.</p><p>We correlate extracts from SWAT lines 2 and 3, a reinterpretation of LISPB data and the new fine-scale sections, S-N across the inner channel and W-E across the estuary. They enable the synopsis of crustal-scale data and regional maps. We find from measurement of several hundred lineaments and planes along the borderlands that the predominant orientation is ENE-WSW, unlike the central Bristol Channel which is WNW-ESE. All these, plus outcrop scale geometries and striation analyses, support the new tectonic partition of SE Wales and west of England.</p><p>Much information on the partition boundaries can be gathered from the marine geography of the estuary using Admiralty charts that yield accurate soundings. Seabed profiles across the estuary illustrate the positions of bedrock. Many align with onshore structure both locally and on the grander scale and through 3D reconstruction, we find that a crucial confluence of three discrete trends of lineament converge near Flat Holm and Steep Holm and may represent the pristine Variscan WNW, the Caledonoid NE and pervasive NNW trends. These islands in the estuary are sentinels at a boundary to the hybrid terrane that underlies SE Wales.</p><p>Mesozoic strata of marginal to distal facies, preserved close to negatively inverted faults with partial growth, mark the reactivated stems of Variscan ramps and NE disturbances with significant thrust displacements. We note two phases of negative inversion require restoration in order to reconstruct the orientations within the Variscan basement. In addition, close examination of late (Tertiary) fault history of the estuary is required to adjust basement trends and displacements to get a better sense of rotation within the Palaeozoic foreland.</p><p>Through restoration the new hybrid sub terrane preserves characteristics of Variscan and Caledonoid trending faults and we deduce that a rotation in major thrust trajectory occurred contemporaneously with reactivation of deeper lineaments. This was followed by a structural decapitation as shallow-level thrusts encroached SE Wales, during late stages of the Variscan Orogeny. Finally, the detached stems were incorporated into an imbricate fan which was significantly affected by post-Carboniferous inversion.   </p><p> </p><p> </p>


2019 ◽  
Vol 24 (1) ◽  
pp. 19-26
Author(s):  
Chuanqing Zhu ◽  
Shujiang Yang ◽  
Huixia Zhao ◽  
Caifu Wang ◽  
Cunguo Lin ◽  
...  

The development and construction of thrust faults in mountain front areas are quite complicated, causing interpretation difficulties with electrical resistivity. To address these difficulties, an optimal stratification method involving magnetotellurics (MT) was applied, based on Fisher's clustering method for continuous data. The feasibility and effectiveness of this method are verified by applying it to the MT exploration data in Qiangtang Basin, Qinghai-Tibet Plateau, China. The results show that the optimal stratification method can improve the resolution of the resistivity model effectively in areas with complex structures. The MT inversion section after optimal stratification reflects the stratum interface, fault and structure style more directly and can be used for comparison with seismic data. The Fisher segmentation method can be applied to the interpretation of the MT data as a supplementary method, especially in the complicated structural belts, areas in which the geological structure and deformation information cannot be recognized effectively by conventional methods.


2004 ◽  
Vol 17 (S1) ◽  
pp. 9-21 ◽  
Author(s):  
Yun-hao Zhou ◽  
Zhang-li Chen ◽  
Fa-jun Miao

2017 ◽  
Vol 122 (12) ◽  
pp. 10,398-10,426 ◽  
Author(s):  
Christelle Guilbaud ◽  
Martine Simoes ◽  
Laurie Barrier ◽  
Amandine Laborde ◽  
Jérôme Van der Woerd ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document