Source process of the 14 November 2001 western Kunlun Mountain M S=8.1 earthquake

2004 ◽  
Vol 17 (S1) ◽  
pp. 9-21 ◽  
Author(s):  
Yun-hao Zhou ◽  
Zhang-li Chen ◽  
Fa-jun Miao
2020 ◽  
Author(s):  
Juzhi Hou

<p><strong><span>Knowledge of the alpine glacier mass fluctuations is a fundamental prerequisite for understanding glacier dynamics, projecting future glacier change, and assessing the availability of freshwater resources. The glaciers on the Tibetan Plateau (TP) are sources of water for most of the major Asian rivers and their fate remains unclear due to accurate estimates of glacier mass fluctuations are lacking over long time scales. Here, we used d</span><sup><span>18</span></sup><span>O record at a proglacial open lake as proxy to estimate the Holocene glacier mass fluctuations in the Western Kunlun Mountain (WKM) quantitatively and continuously. Relative to past decades, maximum WKM glacier mass loss (-28.62±25.76 Gt) occurred at 9.5-8.5 ka BP, and maximum glacier mass gain (24.53±25.02 Gt) occurred at 1.3~0.5 ka BP, the difference in WKM glacier mass between the two periods account for ~20% of the total glaciers. Long-term changes in glacier mass suggests the TP glaciers likely face severe threats at the current rates of global warming. </span></strong></p>


2016 ◽  
Author(s):  
Yetang Wang ◽  
Shugui Hou ◽  
Wenling An ◽  
Hongxi Pang ◽  
Yaping Liu

Abstract. "Pamir–Karakoram–Western-Kunlun-Mountain (northwestern Tibetan Plateau) Glacier Anomaly" has been a topic of debate due to the balanced, or even slightly positive glacier mass budgets in the early 21st century. Here we focus on the evolution of glaciers on the western Kunlun Mountain and its comparison with those from other regions of the Tibetan Plateau. The possible driver for the glacier evolution is also discussed. Western Kunlun Mountain glaciers reduce in area by 0.12 % yr−1 from 1970s to 2007–2011. However, there is no significant area change after 1999. Averaged glacier thickness loss is 0.08 ± 0.09 m yr−1 from 1970s to 2000, which is in accordance with elevation change during the period 2003–2008 estimated by the ICESat laser altimetry measurements. These further confirm the anomaly of glaciers in this region. Slight glacier reduction over the northwestern Tibetan Plateau may result from more accumulation from increased precipitation in winter which to great extent protects it from mass reductions under climate warming during 1961–2000. Warming slowdown since 2000 happening at this region may further mitigate glacier mass reduction, especially for the early 21st century.


2017 ◽  
Vol 122 (12) ◽  
pp. 10,398-10,426 ◽  
Author(s):  
Christelle Guilbaud ◽  
Martine Simoes ◽  
Laurie Barrier ◽  
Amandine Laborde ◽  
Jérôme Van der Woerd ◽  
...  

2018 ◽  
Vol 64 (246) ◽  
pp. 624-636 ◽  
Author(s):  
YETANG WANG ◽  
SHUGUI HOU ◽  
BAOJUAN HUAI ◽  
WENLING AN ◽  
HONGXI PANG ◽  
...  

ABSTRACTWestern Kunlun Mountain (WKM) glaciers show balanced or even slightly positive mass budgets in the early 21st century, and this is anomalous in a global context of glacier reduction. However, it is unknown whether the stability prevails at longer time scales because mass budgets have been unavailable before 2000. Here topographical maps, Shuttle Radar Topography Mission and Landsat data are used to examine the area and surface elevation changes of glaciers on the WKM since the 1970s. Heterogeneous glacier behaviors are observed not only in the changes of length and area, but also in the spatial distribution of surface elevation changes. However, on average, glacier area and elevation changes are not significant. Glaciers reduce in the area by 0.07 ± 0.1% a−1 from the 1970s to 2016. Averaged glacier mass loss is −0.06 ± 0.13 m w.e. a−1 from the 1970s to 1999. These findings show that the WKM glacier anomaly extends back at least to the 1970s.


Author(s):  
Rumeng Guo ◽  
Hongfeng Yang ◽  
Yu Li ◽  
Yong Zheng ◽  
Lupeng Zhang

Abstract The 21 May 2021 Maduo earthquake occurred on the Kunlun Mountain Pass–Jiangcuo fault (KMPJF), a seismogenic fault with no documented large earthquakes. To probe its kinematics, we first estimate the slip rates of the KMPJF and Tuosuo Lake segment (TLS, ∼75 km north of the KMPJF) of the East Kunlun fault (EKLF) based on the secular Global Positioning System (GPS) data using the Markov chain Monte Carlo method. Our model reveals that the slip rates of the KMPJF and TLS are 1.7 ± 0.8 and 7.1 ± 0.3 mm/yr, respectively. Then, we invert high-resolution GPS and Interferometric Synthetic Aperture Radar observations to decipher the fault geometry and detailed coseismic slip distribution associated with the Maduo earthquake. The geometry of the KMPFJ significantly varies along strike, composed of five fault subsegments. The most slip is accommodated by two steeply dipping fault segments, with the patch of large sinistral slip concentrated in the shallow depth on a simple straight structure. The released seismic moment is ∼1.5×1020  N·m, equivalent to an Mw 7.39 event, with a peak slip of ∼9.3 m. Combining the average coseismic slip and slip rate of the main fault, an earthquake recurrence period of ∼1250−400+1120  yr is estimated. The Maduo earthquake reminds us to reevaluate the potential of seismic gaps where slip rates are low. Based on our calculated Coulomb failure stress, the Maduo earthquake imposes positive stress on the Maqin–Maqu segment of the EKLF, a long-recognized seismic gap, implying that it may accelerate the occurrence of the next major event in this region.


Sign in / Sign up

Export Citation Format

Share Document