scholarly journals Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events

2021 ◽  
Vol 9 ◽  
Author(s):  
Moein Mellat ◽  
Hannah Bailey ◽  
Kaisa-Riikka Mustonen ◽  
Hannu Marttila ◽  
Eric S. Klein ◽  
...  

Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ18O, δ2H, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ2H = 7.6⋅δ18O–1.8 (r2 = 0.96, p < 0.01). Mean amount-weighted δ18O, δ2H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ18O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ18O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ18O values. Yet 32% of precipitation events, characterized by lower δ18O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2019 ◽  
Vol 32 (8) ◽  
pp. 2381-2395
Author(s):  
Evelien Dekker ◽  
Richard Bintanja ◽  
Camiel Severijns

AbstractWith Arctic summer sea ice potentially disappearing halfway through this century, the surface albedo and insulating effects of Arctic sea ice will decrease considerably. The ongoing Arctic sea ice retreat also affects the strength of the Planck, lapse rate, cloud, and surface albedo feedbacks together with changes in the heat exchange between the ocean and the atmosphere, but their combined effect on climate sensitivity has not been quantified. This study presents an estimate of all Arctic sea ice related climate feedbacks combined. We use a new method to keep Arctic sea ice at its present-day (PD) distribution under a changing climate in a 50-yr CO2 doubling simulation, using a fully coupled global climate model (EC-Earth, version 2.3). We nudge the Arctic Ocean to the (monthly dependent) year 2000 mean temperature and minimum salinity fields on a mask representing PD sea ice cover. We are able to preserve about 95% of the PD mean March and 77% of the September PD Arctic sea ice extent by applying this method. Using simulations with and without nudging, we estimate the climate response associated with Arctic sea ice changes. The Arctic sea ice feedback globally equals 0.28 ± 0.15 W m−2 K−1. The total sea ice feedback thus amplifies the climate response for a doubling of CO2, in line with earlier findings. Our estimate of the Arctic sea ice feedback agrees reasonably well with earlier CMIP5 global climate feedback estimates and shows that the Arctic sea ice exerts a considerable effect on the Arctic and global climate sensitivity.


2021 ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

Abstract Arctic sea ice has been retreating at unprecedented pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) in order to reduce these uncertainties. We select the models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to smaller Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of the future Arctic sea-ice loss when including all models.


2018 ◽  
Author(s):  
Monica Ionita ◽  
Klaus Grosfeld ◽  
Patrick Scholz ◽  
Renate Treffeisen ◽  
Gerrit Lohmann

Abstract. Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice coverage, variability and long term change. However, its predictability is complex and it depends on various atmospheric and oceanic parameters. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on oceanic and different atmospheric variables to calculate an estimate of the September sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts of monthly/seasonal SSIE forecasts show a relatively reduced skill, when the trend is removed, we show here that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' atmospheric and oceanic conditions. Our statistical model skillfully captures the interannual variability of the SSIE and could provide a valuable tool for identifying relevant regions and atmospheric parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.


2015 ◽  
Vol 96 (12) ◽  
pp. 2079-2105 ◽  
Author(s):  
E. Carmack ◽  
I. Polyakov ◽  
L. Padman ◽  
I. Fer ◽  
E. Hunke ◽  
...  

Abstract The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated interdisciplinary and international program that will not only improve understanding of this critical component of global climate but will also provide opportunities to develop human resources with the skills required to tackle related problems in complex climate systems. We propose a research strategy with components that include 1) improved mapping of the upper- and middepth Arctic Ocean, 2) enhanced quantification of important process, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat-flux mechanisms and their interactions.


2020 ◽  
Author(s):  
Weixin Zhu ◽  
Lu Zhou ◽  
Shiming Xu

<p><strong>Abstract</strong></p><p>Arctic sea ice is a critical component in the global climate system. It affects the climate system by radiating incident heat back into space and regulating ocean-atmosphere heat and momentum. Satellite altimetry such as CryoSat-2 serves as the primary approach for observing sea ice thickness. Nevertheless, the thickness retrieval with CryoSat-2 mainly depends on the height of the ice surface above the sea level, which leads to significant uncertainties over thin ice regimes. The sea ice at the north of Greenland is considered one of the oldest and thickest in the Arctic. However, during late February - early March 2018, a polynya formed north to Greenland due to extra strong southern winds. We focus on the retrieval of sea ice thickness and snow conditions with CryoSat-2 and SMOS during the formation of the polynya. Specifically, we investigate the uncertainty of CryoSat-2 and carry out inter- comparison of sea ice thickness retrieval with SMOS and CryoSat-2/SMOS synergy. Besides, further discussion of retrieval with CryoSat-2 is provided for such scenarios where the mélange of thick ice and newly formed thin ice is present.</p>


2021 ◽  
Author(s):  
Ben Kopec ◽  
Martin Werner ◽  
Kyle Mattingly ◽  
Eric Klein ◽  
David Noone ◽  
...  

<p>One of the key changes of the global climate system is the loss of Arctic sea ice, particularly through its impact on ocean-atmosphere interactions. Enhanced evaporation under open-water conditions is widespread from places and periods previously precluded by perennial sea ice cover, leading to an increase in vapor uptake across the Arctic. However, the response of ocean-atmosphere system to sea ice loss varies significantly over time and space. To quantify these variations, the Arctic Water Isotope Network (AWIN) has been established to make continuous water vapor isotope measurements (δD, δ<sup>18</sup>O, and d-excess) at seven land-based stations from Barrow, Alaska to Ny Alesund, Svalbard. This network has been supplemented by continuous mobile isotope data from the CiASOM project on the Polarstern ice-breaker throughout the MOSAiC “Arctic-drift” expedition. With this network, we comprehensively track water vapor from its source to sink, thereby demonstrating how it varies simultaneously across the entire Arctic Basin.</p><p>Here, we utilize AWIN measurements to specifically quantify how variations in sea ice extent and distribution affect moisture content, water vapor isotope traits, and transport along several critical storm tracks. By monitoring vapor isotopic changes in air masses advected from one site to another, we are able to track how much moisture is added along a given trajectory. We investigate several primary vapor transport pathways into the Arctic, including the North Atlantic/Greenland Sea, Baffin Bay, and the Bering Strait, and track the geochemical signature of this vapor as it transits along these well-established storm pathways into and within the Arctic. By quantifying isotopic changes between our sites we: 1) identify the distinct isotopic fingerprint of moisture sourced by evaporation from Arctic seas that is critically dependent on variable sea ice conditions, 2) detect moisture addition into critical storm tracks as they transit across the Arctic, and 3) determine the spatial variability of this enhanced Arctic-sourced evaporation and moisture. We find that for every major storm track observed, the Arctic Ocean and surrounding seas are significant sources of enhanced moisture uptake, acting within an amplified water cycle.</p>


2015 ◽  
Vol 6 (1) ◽  
pp. 1033-1045
Author(s):  
L. Gimeno ◽  
M. Vázquez ◽  
R. Nieto ◽  
R. M. Trigo

Abstract. If we could choose a region where the effects of global warming are likely to be pronounced and considerable, and at the same time one where the changes could affect the global climate in similarly asymmetric way with respect to other regions, this would unequivocally be the Arctic. The atmospheric branch of the hydrological cycle lies behind the linkages between the Arctic system and the global climate. Changes in the atmospheric moisture transport have been proposed as a vehicle for interpreting the most significant changes in the Arctic region. This is because the transport of moisture from the extratropical regions to the Arctic has increased in recent decades, and is expected to increase within a warming climate. This increase could be due either to changes in circulation patterns which have altered the moisture sources, or to changes in the intensity of the moisture sources because of enhanced evaporation, or a combination of these two mechanisms. In this short communication we focus on the assessing more objectively the strong link between ocean evaporation trends and Arctic Sea ice melting. We will critically analyze several recent results suggesting links between moisture transport and the extent of sea-ice in the Arctic, this being one of the most distinct indicators of continuous climate change both in the Arctic and on a global scale. To do this we will use a sophisticated Lagrangian approach to develop a more robust framework on some of these previous disconnect ng results, using new information and insights. Among the many mechanisms that could be involved are hydrological (increased Arctic river discharges), radiative (increase of cloud cover and water vapour) and meteorological (increase in summer storms crossing the Arctic, or increments in precipitation).


Sign in / Sign up

Export Citation Format

Share Document